MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvscan2 Structured version   Unicode version

Theorem lvecvscan2 17632
Description: Cancellation law for scalar multiplication. (hvmulcan2 25862 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmulcan2.v  |-  V  =  ( Base `  W
)
lvecmulcan2.s  |-  .x.  =  ( .s `  W )
lvecmulcan2.f  |-  F  =  (Scalar `  W )
lvecmulcan2.k  |-  K  =  ( Base `  F
)
lvecmulcan2.o  |-  .0.  =  ( 0g `  W )
lvecmulcan2.w  |-  ( ph  ->  W  e.  LVec )
lvecmulcan2.a  |-  ( ph  ->  A  e.  K )
lvecmulcan2.b  |-  ( ph  ->  B  e.  K )
lvecmulcan2.x  |-  ( ph  ->  X  e.  V )
lvecmulcan2.n  |-  ( ph  ->  X  =/=  .0.  )
Assertion
Ref Expression
lvecvscan2  |-  ( ph  ->  ( ( A  .x.  X )  =  ( B  .x.  X )  <-> 
A  =  B ) )

Proof of Theorem lvecvscan2
StepHypRef Expression
1 lvecmulcan2.n . . . . 5  |-  ( ph  ->  X  =/=  .0.  )
21neneqd 2645 . . . 4  |-  ( ph  ->  -.  X  =  .0.  )
3 biorf 405 . . . . 5  |-  ( -.  X  =  .0.  ->  ( ( A ( -g `  F ) B )  =  ( 0g `  F )  <->  ( X  =  .0.  \/  ( A ( -g `  F
) B )  =  ( 0g `  F
) ) ) )
4 orcom 387 . . . . 5  |-  ( ( X  =  .0.  \/  ( A ( -g `  F
) B )  =  ( 0g `  F
) )  <->  ( ( A ( -g `  F
) B )  =  ( 0g `  F
)  \/  X  =  .0.  ) )
53, 4syl6bb 261 . . . 4  |-  ( -.  X  =  .0.  ->  ( ( A ( -g `  F ) B )  =  ( 0g `  F )  <->  ( ( A ( -g `  F
) B )  =  ( 0g `  F
)  \/  X  =  .0.  ) ) )
62, 5syl 16 . . 3  |-  ( ph  ->  ( ( A (
-g `  F ) B )  =  ( 0g `  F )  <-> 
( ( A (
-g `  F ) B )  =  ( 0g `  F )  \/  X  =  .0.  ) ) )
7 lvecmulcan2.v . . . 4  |-  V  =  ( Base `  W
)
8 lvecmulcan2.s . . . 4  |-  .x.  =  ( .s `  W )
9 lvecmulcan2.f . . . 4  |-  F  =  (Scalar `  W )
10 lvecmulcan2.k . . . 4  |-  K  =  ( Base `  F
)
11 eqid 2443 . . . 4  |-  ( 0g
`  F )  =  ( 0g `  F
)
12 lvecmulcan2.o . . . 4  |-  .0.  =  ( 0g `  W )
13 lvecmulcan2.w . . . 4  |-  ( ph  ->  W  e.  LVec )
14 lveclmod 17626 . . . . . . 7  |-  ( W  e.  LVec  ->  W  e. 
LMod )
1513, 14syl 16 . . . . . 6  |-  ( ph  ->  W  e.  LMod )
169lmodfgrp 17395 . . . . . 6  |-  ( W  e.  LMod  ->  F  e. 
Grp )
1715, 16syl 16 . . . . 5  |-  ( ph  ->  F  e.  Grp )
18 lvecmulcan2.a . . . . 5  |-  ( ph  ->  A  e.  K )
19 lvecmulcan2.b . . . . 5  |-  ( ph  ->  B  e.  K )
20 eqid 2443 . . . . . 6  |-  ( -g `  F )  =  (
-g `  F )
2110, 20grpsubcl 15992 . . . . 5  |-  ( ( F  e.  Grp  /\  A  e.  K  /\  B  e.  K )  ->  ( A ( -g `  F ) B )  e.  K )
2217, 18, 19, 21syl3anc 1229 . . . 4  |-  ( ph  ->  ( A ( -g `  F ) B )  e.  K )
23 lvecmulcan2.x . . . 4  |-  ( ph  ->  X  e.  V )
247, 8, 9, 10, 11, 12, 13, 22, 23lvecvs0or 17628 . . 3  |-  ( ph  ->  ( ( ( A ( -g `  F
) B )  .x.  X )  =  .0.  <->  ( ( A ( -g `  F ) B )  =  ( 0g `  F )  \/  X  =  .0.  ) ) )
25 eqid 2443 . . . . 5  |-  ( -g `  W )  =  (
-g `  W )
267, 8, 9, 10, 25, 20, 15, 18, 19, 23lmodsubdir 17442 . . . 4  |-  ( ph  ->  ( ( A (
-g `  F ) B )  .x.  X
)  =  ( ( A  .x.  X ) ( -g `  W
) ( B  .x.  X ) ) )
2726eqeq1d 2445 . . 3  |-  ( ph  ->  ( ( ( A ( -g `  F
) B )  .x.  X )  =  .0.  <->  ( ( A  .x.  X
) ( -g `  W
) ( B  .x.  X ) )  =  .0.  ) )
286, 24, 273bitr2rd 282 . 2  |-  ( ph  ->  ( ( ( A 
.x.  X ) (
-g `  W )
( B  .x.  X
) )  =  .0.  <->  ( A ( -g `  F
) B )  =  ( 0g `  F
) ) )
297, 9, 8, 10lmodvscl 17403 . . . 4  |-  ( ( W  e.  LMod  /\  A  e.  K  /\  X  e.  V )  ->  ( A  .x.  X )  e.  V )
3015, 18, 23, 29syl3anc 1229 . . 3  |-  ( ph  ->  ( A  .x.  X
)  e.  V )
317, 9, 8, 10lmodvscl 17403 . . . 4  |-  ( ( W  e.  LMod  /\  B  e.  K  /\  X  e.  V )  ->  ( B  .x.  X )  e.  V )
3215, 19, 23, 31syl3anc 1229 . . 3  |-  ( ph  ->  ( B  .x.  X
)  e.  V )
337, 12, 25lmodsubeq0 17443 . . 3  |-  ( ( W  e.  LMod  /\  ( A  .x.  X )  e.  V  /\  ( B 
.x.  X )  e.  V )  ->  (
( ( A  .x.  X ) ( -g `  W ) ( B 
.x.  X ) )  =  .0.  <->  ( A  .x.  X )  =  ( B  .x.  X ) ) )
3415, 30, 32, 33syl3anc 1229 . 2  |-  ( ph  ->  ( ( ( A 
.x.  X ) (
-g `  W )
( B  .x.  X
) )  =  .0.  <->  ( A  .x.  X )  =  ( B  .x.  X ) ) )
3510, 11, 20grpsubeq0 15998 . . 3  |-  ( ( F  e.  Grp  /\  A  e.  K  /\  B  e.  K )  ->  ( ( A (
-g `  F ) B )  =  ( 0g `  F )  <-> 
A  =  B ) )
3617, 18, 19, 35syl3anc 1229 . 2  |-  ( ph  ->  ( ( A (
-g `  F ) B )  =  ( 0g `  F )  <-> 
A  =  B ) )
3728, 34, 363bitr3d 283 1  |-  ( ph  ->  ( ( A  .x.  X )  =  ( B  .x.  X )  <-> 
A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    = wceq 1383    e. wcel 1804    =/= wne 2638   ` cfv 5578  (class class class)co 6281   Basecbs 14509  Scalarcsca 14577   .scvsca 14578   0gc0g 14714   Grpcgrp 15927   -gcsg 15929   LModclmod 17386   LVecclvec 17622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6957  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-3 10601  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-0g 14716  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15931  df-minusg 15932  df-sbg 15933  df-mgp 17016  df-ur 17028  df-ring 17074  df-oppr 17146  df-dvdsr 17164  df-unit 17165  df-invr 17195  df-drng 17272  df-lmod 17388  df-lvec 17623
This theorem is referenced by:  lspsneu  17643  lvecindp  17658  lvecindp2  17659  lshpsmreu  34574  lshpkrlem5  34579  hgmapval1  37363  hgmapadd  37364  hgmapmul  37365  hgmaprnlem1N  37366  hgmap11  37372
  Copyright terms: Public domain W3C validator