Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lukshef-ax2 Structured version   Unicode version

Theorem lukshef-ax2 28397
Description: A single axiom for propositional calculus offered by Lukasiewicz. (Contributed by Anthony Hart, 14-Aug-2011.)
Assertion
Ref Expression
lukshef-ax2  |-  ( (
ph  -/\  ( ps  -/\  ch ) )  -/\  (
( ph  -/\  ( ch 
-/\  ph ) )  -/\  ( ( th  -/\  ps )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) )

Proof of Theorem lukshef-ax2
StepHypRef Expression
1 nannan 1338 . . . 4  |-  ( (
ph  -/\  ( ps  -/\  ch ) )  <->  ( ph  ->  ( ps  /\  ch ) ) )
21biimpi 194 . . 3  |-  ( (
ph  -/\  ( ps  -/\  ch ) )  ->  ( ph  ->  ( ps  /\  ch ) ) )
3 simpr 461 . . . . 5  |-  ( ( ps  /\  ch )  ->  ch )
43imim2i 14 . . . 4  |-  ( (
ph  ->  ( ps  /\  ch ) )  ->  ( ph  ->  ch ) )
5 simpl 457 . . . . . 6  |-  ( ( ps  /\  ch )  ->  ps )
65imim2i 14 . . . . 5  |-  ( (
ph  ->  ( ps  /\  ch ) )  ->  ( ph  ->  ps ) )
7 pm2.27 39 . . . . . . 7  |-  ( ph  ->  ( ( ph  ->  ps )  ->  ps )
)
87anim2d 565 . . . . . 6  |-  ( ph  ->  ( ( th  /\  ( ph  ->  ps )
)  ->  ( th  /\  ps ) ) )
98expdimp 437 . . . . 5  |-  ( (
ph  /\  th )  ->  ( ( ph  ->  ps )  ->  ( th  /\  ps ) ) )
106, 9syl5com 30 . . . 4  |-  ( (
ph  ->  ( ps  /\  ch ) )  ->  (
( ph  /\  th )  ->  ( th  /\  ps ) ) )
11 ancr 549 . . . . 5  |-  ( (
ph  ->  ch )  -> 
( ph  ->  ( ch 
/\  ph ) ) )
1211anim1i 568 . . . 4  |-  ( ( ( ph  ->  ch )  /\  ( ( ph  /\ 
th )  ->  ( th  /\  ps ) ) )  ->  ( ( ph  ->  ( ch  /\  ph ) )  /\  (
( ph  /\  th )  ->  ( th  /\  ps ) ) ) )
134, 10, 12syl2anc 661 . . 3  |-  ( (
ph  ->  ( ps  /\  ch ) )  ->  (
( ph  ->  ( ch 
/\  ph ) )  /\  ( ( ph  /\  th )  ->  ( th  /\  ps ) ) ) )
14 con3 134 . . . . 5  |-  ( ( ( ph  /\  th )  ->  ( th  /\  ps ) )  ->  ( -.  ( th  /\  ps )  ->  -.  ( ph  /\ 
th ) ) )
15 df-nan 1335 . . . . 5  |-  ( ( th  -/\  ps )  <->  -.  ( th  /\  ps ) )
16 df-nan 1335 . . . . 5  |-  ( (
ph  -/\  th )  <->  -.  ( ph  /\  th ) )
1714, 15, 163imtr4g 270 . . . 4  |-  ( ( ( ph  /\  th )  ->  ( th  /\  ps ) )  ->  (
( th  -/\  ps )  ->  ( ph  -/\  th )
) )
1817anim2i 569 . . 3  |-  ( ( ( ph  ->  ( ch  /\  ph ) )  /\  ( ( ph  /\ 
th )  ->  ( th  /\  ps ) ) )  ->  ( ( ph  ->  ( ch  /\  ph ) )  /\  (
( th  -/\  ps )  ->  ( ph  -/\  th )
) ) )
19 nannan 1338 . . . . 5  |-  ( (
ph  -/\  ( ch  -/\  ph ) )  <->  ( ph  ->  ( ch  /\  ph ) ) )
2019biimpri 206 . . . 4  |-  ( (
ph  ->  ( ch  /\  ph ) )  ->  ( ph  -/\  ( ch  -/\  ph ) ) )
21 nanim 1339 . . . . 5  |-  ( ( ( th  -/\  ps )  ->  ( ph  -/\  th )
)  <->  ( ( th 
-/\  ps )  -/\  (
( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) )
2221biimpi 194 . . . 4  |-  ( ( ( th  -/\  ps )  ->  ( ph  -/\  th )
)  ->  ( ( th  -/\  ps )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) )
2320, 22anim12i 566 . . 3  |-  ( ( ( ph  ->  ( ch  /\  ph ) )  /\  ( ( th 
-/\  ps )  ->  ( ph  -/\  th ) ) )  ->  ( ( ph  -/\  ( ch  -/\  ph ) )  /\  (
( th  -/\  ps )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) )
242, 13, 18, 234syl 21 . 2  |-  ( (
ph  -/\  ( ps  -/\  ch ) )  ->  (
( ph  -/\  ( ch 
-/\  ph ) )  /\  ( ( th  -/\  ps )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) )
25 nannan 1338 . 2  |-  ( ( ( ph  -/\  ( ps  -/\  ch ) ) 
-/\  ( ( ph  -/\  ( ch  -/\  ph )
)  -/\  ( ( th  -/\  ps )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) )  <-> 
( ( ph  -/\  ( ps  -/\  ch ) )  ->  ( ( ph  -/\  ( ch  -/\  ph )
)  /\  ( ( th  -/\  ps )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) ) )
2624, 25mpbir 209 1  |-  ( (
ph  -/\  ( ps  -/\  ch ) )  -/\  (
( ph  -/\  ( ch 
-/\  ph ) )  -/\  ( ( th  -/\  ps )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    -/\ wnan 1334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-nan 1335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator