MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubsn Structured version   Unicode version

Theorem lubsn 15363
Description: The least upper bound of a singleton. (chsupsn 24948 analog.) (Contributed by NM, 20-Oct-2011.)
Hypotheses
Ref Expression
lubsn.b  |-  B  =  ( Base `  K
)
lubsn.u  |-  U  =  ( lub `  K
)
Assertion
Ref Expression
lubsn  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( U `  { X } )  =  X )

Proof of Theorem lubsn
StepHypRef Expression
1 lubsn.u . . . 4  |-  U  =  ( lub `  K
)
2 eqid 2451 . . . 4  |-  ( join `  K )  =  (
join `  K )
3 simpl 457 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  K  e.  Lat )
4 simpr 461 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  X  e.  B )
51, 2, 3, 4, 4joinval 15274 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( X ( join `  K ) X )  =  ( U `  { X ,  X }
) )
6 dfsn2 3985 . . . 4  |-  { X }  =  { X ,  X }
76fveq2i 5789 . . 3  |-  ( U `
 { X }
)  =  ( U `
 { X ,  X } )
85, 7syl6reqr 2510 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( U `  { X } )  =  ( X ( join `  K
) X ) )
9 lubsn.b . . 3  |-  B  =  ( Base `  K
)
109, 2latjidm 15343 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( X ( join `  K ) X )  =  X )
118, 10eqtrd 2491 1  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  ( U `  { X } )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   {csn 3972   {cpr 3974   ` cfv 5513  (class class class)co 6187   Basecbs 14273   lubclub 15211   joincjn 15213   Latclat 15314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-poset 15215  df-lub 15243  df-glb 15244  df-join 15245  df-meet 15246  df-lat 15315
This theorem is referenced by:  lubel  15391
  Copyright terms: Public domain W3C validator