MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubprop Structured version   Unicode version

Theorem lubprop 15473
Description: Properties of greatest lower bound of a poset. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubprop.b  |-  B  =  ( Base `  K
)
lubprop.l  |-  .<_  =  ( le `  K )
lubprop.u  |-  U  =  ( lub `  K
)
lubprop.k  |-  ( ph  ->  K  e.  V )
lubprop.s  |-  ( ph  ->  S  e.  dom  U
)
Assertion
Ref Expression
lubprop  |-  ( ph  ->  ( A. y  e.  S  y  .<_  ( U `
 S )  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  ( U `  S )  .<_  z ) ) )
Distinct variable groups:    z, B    y, z, K    y, S, z    y,  .<_    y, U, z
Allowed substitution hints:    ph( y, z)    B( y)    .<_ ( z)    V( y, z)

Proof of Theorem lubprop
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 lubprop.b . . . 4  |-  B  =  ( Base `  K
)
2 lubprop.l . . . 4  |-  .<_  =  ( le `  K )
3 lubprop.u . . . 4  |-  U  =  ( lub `  K
)
4 biid 236 . . . 4  |-  ( ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) )  <->  ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) ) )
5 lubprop.k . . . 4  |-  ( ph  ->  K  e.  V )
6 lubprop.s . . . . 5  |-  ( ph  ->  S  e.  dom  U
)
71, 2, 3, 5, 6lubelss 15469 . . . 4  |-  ( ph  ->  S  C_  B )
81, 2, 3, 4, 5, 7lubval 15471 . . 3  |-  ( ph  ->  ( U `  S
)  =  ( iota_ x  e.  B  ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) ) ) )
98eqcomd 2475 . 2  |-  ( ph  ->  ( iota_ x  e.  B  ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) ) )  =  ( U `  S ) )
101, 3, 5, 6lubcl 15472 . . 3  |-  ( ph  ->  ( U `  S
)  e.  B )
111, 2, 3, 4, 5, 6lubeu 15470 . . 3  |-  ( ph  ->  E! x  e.  B  ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) ) )
12 breq2 4451 . . . . . 6  |-  ( x  =  ( U `  S )  ->  (
y  .<_  x  <->  y  .<_  ( U `  S ) ) )
1312ralbidv 2903 . . . . 5  |-  ( x  =  ( U `  S )  ->  ( A. y  e.  S  y  .<_  x  <->  A. y  e.  S  y  .<_  ( U `  S ) ) )
14 breq1 4450 . . . . . . 7  |-  ( x  =  ( U `  S )  ->  (
x  .<_  z  <->  ( U `  S )  .<_  z ) )
1514imbi2d 316 . . . . . 6  |-  ( x  =  ( U `  S )  ->  (
( A. y  e.  S  y  .<_  z  ->  x  .<_  z )  <->  ( A. y  e.  S  y  .<_  z  ->  ( U `  S )  .<_  z ) ) )
1615ralbidv 2903 . . . . 5  |-  ( x  =  ( U `  S )  ->  ( A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z )  <->  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  ( U `  S )  .<_  z ) ) )
1713, 16anbi12d 710 . . . 4  |-  ( x  =  ( U `  S )  ->  (
( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) )  <->  ( A. y  e.  S  y  .<_  ( U `  S
)  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  ( U `  S )  .<_  z ) ) ) )
1817riota2 6268 . . 3  |-  ( ( ( U `  S
)  e.  B  /\  E! x  e.  B  ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) ) )  ->  ( ( A. y  e.  S  y  .<_  ( U `  S
)  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  ( U `  S )  .<_  z ) )  <->  ( iota_ x  e.  B  ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) ) )  =  ( U `  S ) ) )
1910, 11, 18syl2anc 661 . 2  |-  ( ph  ->  ( ( A. y  e.  S  y  .<_  ( U `  S )  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  ( U `  S )  .<_  z ) )  <->  ( iota_ x  e.  B  ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) ) )  =  ( U `  S ) ) )
209, 19mpbird 232 1  |-  ( ph  ->  ( A. y  e.  S  y  .<_  ( U `
 S )  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  ( U `  S )  .<_  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E!wreu 2816   class class class wbr 4447   dom cdm 4999   ` cfv 5588   iota_crio 6244   Basecbs 14490   lecple 14562   lubclub 15429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-lub 15461
This theorem is referenced by:  luble  15474  lublem  15605
  Copyright terms: Public domain W3C validator