MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lublecllem Structured version   Unicode version

Theorem lublecllem 16227
Description: Lemma for lublecl 16228 and lubid 16229. (Contributed by NM, 8-Sep-2018.)
Hypotheses
Ref Expression
lublecl.b  |-  B  =  ( Base `  K
)
lublecl.l  |-  .<_  =  ( le `  K )
lublecl.u  |-  U  =  ( lub `  K
)
lublecl.k  |-  ( ph  ->  K  e.  Poset )
lublecl.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
lublecllem  |-  ( (
ph  /\  x  e.  B )  ->  (
( A. z  e. 
{ y  e.  B  |  y  .<_  X }
z  .<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y 
.<_  X } z  .<_  w  ->  x  .<_  w ) )  <->  x  =  X
) )
Distinct variable groups:    x, w, y, z,  .<_    w, B, x, y, z    w, K, x, z    w, X, x, y, z    ph, w, x
Allowed substitution hints:    ph( y, z)    U( x, y, z, w)    K( y)

Proof of Theorem lublecllem
StepHypRef Expression
1 breq1 4424 . . . 4  |-  ( y  =  z  ->  (
y  .<_  X  <->  z  .<_  X ) )
21ralrab 3234 . . 3  |-  ( A. z  e.  { y  e.  B  |  y  .<_  X } z  .<_  x 
<-> 
A. z  e.  B  ( z  .<_  X  -> 
z  .<_  x ) )
31ralrab 3234 . . . . 5  |-  ( A. z  e.  { y  e.  B  |  y  .<_  X } z  .<_  w 
<-> 
A. z  e.  B  ( z  .<_  X  -> 
z  .<_  w ) )
43imbi1i 327 . . . 4  |-  ( ( A. z  e.  {
y  e.  B  | 
y  .<_  X } z 
.<_  w  ->  x  .<_  w )  <->  ( A. z  e.  B  ( z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w ) )
54ralbii 2857 . . 3  |-  ( A. w  e.  B  ( A. z  e.  { y  e.  B  |  y 
.<_  X } z  .<_  w  ->  x  .<_  w )  <->  A. w  e.  B  ( A. z  e.  B  ( z  .<_  X  -> 
z  .<_  w )  ->  x  .<_  w ) )
62, 5anbi12i 702 . 2  |-  ( ( A. z  e.  {
y  e.  B  | 
y  .<_  X } z 
.<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y  .<_  X } z  .<_  w  ->  x  .<_  w ) )  <->  ( A. z  e.  B  ( z  .<_  X  ->  z  .<_  x )  /\  A. w  e.  B  ( A. z  e.  B  (
z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w ) ) )
7 lublecl.x . . . . . 6  |-  ( ph  ->  X  e.  B )
8 lublecl.k . . . . . . . 8  |-  ( ph  ->  K  e.  Poset )
9 lublecl.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
10 lublecl.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
119, 10posref 16189 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  X  e.  B )  ->  X  .<_  X )
128, 7, 11syl2anc 666 . . . . . . 7  |-  ( ph  ->  X  .<_  X )
13 breq1 4424 . . . . . . . . 9  |-  ( z  =  X  ->  (
z  .<_  X  <->  X  .<_  X ) )
14 breq1 4424 . . . . . . . . 9  |-  ( z  =  X  ->  (
z  .<_  x  <->  X  .<_  x ) )
1513, 14imbi12d 322 . . . . . . . 8  |-  ( z  =  X  ->  (
( z  .<_  X  -> 
z  .<_  x )  <->  ( X  .<_  X  ->  X  .<_  x ) ) )
1615rspcva 3181 . . . . . . 7  |-  ( ( X  e.  B  /\  A. z  e.  B  ( z  .<_  X  ->  z 
.<_  x ) )  -> 
( X  .<_  X  ->  X  .<_  x ) )
1712, 16syl5com 32 . . . . . 6  |-  ( ph  ->  ( ( X  e.  B  /\  A. z  e.  B  ( z  .<_  X  ->  z  .<_  x ) )  ->  X  .<_  x ) )
187, 17mpand 680 . . . . 5  |-  ( ph  ->  ( A. z  e.  B  ( z  .<_  X  ->  z  .<_  x )  ->  X  .<_  x ) )
1918adantr 467 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( A. z  e.  B  ( z  .<_  X  -> 
z  .<_  x )  ->  X  .<_  x ) )
20 idd 26 . . . . . . 7  |-  ( z  e.  B  ->  (
z  .<_  X  ->  z  .<_  X ) )
2120rgen 2786 . . . . . 6  |-  A. z  e.  B  ( z  .<_  X  ->  z  .<_  X )
22 breq2 4425 . . . . . . . . . . 11  |-  ( w  =  X  ->  (
z  .<_  w  <->  z  .<_  X ) )
2322imbi2d 318 . . . . . . . . . 10  |-  ( w  =  X  ->  (
( z  .<_  X  -> 
z  .<_  w )  <->  ( z  .<_  X  ->  z  .<_  X ) ) )
2423ralbidv 2865 . . . . . . . . 9  |-  ( w  =  X  ->  ( A. z  e.  B  ( z  .<_  X  -> 
z  .<_  w )  <->  A. z  e.  B  ( z  .<_  X  ->  z  .<_  X ) ) )
25 breq2 4425 . . . . . . . . 9  |-  ( w  =  X  ->  (
x  .<_  w  <->  x  .<_  X ) )
2624, 25imbi12d 322 . . . . . . . 8  |-  ( w  =  X  ->  (
( A. z  e.  B  ( z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w )  <-> 
( A. z  e.  B  ( z  .<_  X  ->  z  .<_  X )  ->  x  .<_  X ) ) )
2726rspcv 3179 . . . . . . 7  |-  ( X  e.  B  ->  ( A. w  e.  B  ( A. z  e.  B  ( z  .<_  X  -> 
z  .<_  w )  ->  x  .<_  w )  -> 
( A. z  e.  B  ( z  .<_  X  ->  z  .<_  X )  ->  x  .<_  X ) ) )
287, 27syl 17 . . . . . 6  |-  ( ph  ->  ( A. w  e.  B  ( A. z  e.  B  ( z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w )  ->  ( A. z  e.  B  (
z  .<_  X  ->  z  .<_  X )  ->  x  .<_  X ) ) )
2921, 28mpii 45 . . . . 5  |-  ( ph  ->  ( A. w  e.  B  ( A. z  e.  B  ( z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w )  ->  x  .<_  X ) )
3029adantr 467 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( A. w  e.  B  ( A. z  e.  B  ( z  .<_  X  -> 
z  .<_  w )  ->  x  .<_  w )  ->  x  .<_  X ) )
318adantr 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  K  e.  Poset )
32 simpr 463 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  B )
337adantr 467 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  X  e.  B )
349, 10posasymb 16191 . . . . . . 7  |-  ( ( K  e.  Poset  /\  x  e.  B  /\  X  e.  B )  ->  (
( x  .<_  X  /\  X  .<_  x )  <->  x  =  X ) )
3531, 32, 33, 34syl3anc 1265 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
( x  .<_  X  /\  X  .<_  x )  <->  x  =  X ) )
3635biimpd 211 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
( x  .<_  X  /\  X  .<_  x )  ->  x  =  X )
)
3736ancomsd 456 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( X  .<_  x  /\  x  .<_  X )  ->  x  =  X )
)
3819, 30, 37syl2and 486 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
( A. z  e.  B  ( z  .<_  X  ->  z  .<_  x )  /\  A. w  e.  B  ( A. z  e.  B  ( z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w ) )  ->  x  =  X ) )
39 breq2 4425 . . . . . . . 8  |-  ( x  =  X  ->  (
z  .<_  x  <->  z  .<_  X ) )
4039biimprd 227 . . . . . . 7  |-  ( x  =  X  ->  (
z  .<_  X  ->  z  .<_  x ) )
4140ralrimivw 2841 . . . . . 6  |-  ( x  =  X  ->  A. z  e.  B  ( z  .<_  X  ->  z  .<_  x ) )
4241adantl 468 . . . . 5  |-  ( ( ( ph  /\  x  e.  B )  /\  x  =  X )  ->  A. z  e.  B  ( z  .<_  X  ->  z  .<_  x ) )
437adantr 467 . . . . . . . 8  |-  ( (
ph  /\  x  =  X )  ->  X  e.  B )
44 breq1 4424 . . . . . . . . . . 11  |-  ( z  =  X  ->  (
z  .<_  w  <->  X  .<_  w ) )
4513, 44imbi12d 322 . . . . . . . . . 10  |-  ( z  =  X  ->  (
( z  .<_  X  -> 
z  .<_  w )  <->  ( X  .<_  X  ->  X  .<_  w ) ) )
4645rspcva 3181 . . . . . . . . 9  |-  ( ( X  e.  B  /\  A. z  e.  B  ( z  .<_  X  ->  z 
.<_  w ) )  -> 
( X  .<_  X  ->  X  .<_  w ) )
47 pm5.5 338 . . . . . . . . . . 11  |-  ( X 
.<_  X  ->  ( ( X  .<_  X  ->  X  .<_  w )  <->  X  .<_  w ) )
4812, 47syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  .<_  X  ->  X  .<_  w )  <-> 
X  .<_  w ) )
49 breq1 4424 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
x  .<_  w  <->  X  .<_  w ) )
5049bicomd 205 . . . . . . . . . 10  |-  ( x  =  X  ->  ( X  .<_  w  <->  x  .<_  w ) )
5148, 50sylan9bb 705 . . . . . . . . 9  |-  ( (
ph  /\  x  =  X )  ->  (
( X  .<_  X  ->  X  .<_  w )  <->  x  .<_  w ) )
5246, 51syl5ib 223 . . . . . . . 8  |-  ( (
ph  /\  x  =  X )  ->  (
( X  e.  B  /\  A. z  e.  B  ( z  .<_  X  -> 
z  .<_  w ) )  ->  x  .<_  w ) )
5343, 52mpand 680 . . . . . . 7  |-  ( (
ph  /\  x  =  X )  ->  ( A. z  e.  B  ( z  .<_  X  -> 
z  .<_  w )  ->  x  .<_  w ) )
5453ralrimivw 2841 . . . . . 6  |-  ( (
ph  /\  x  =  X )  ->  A. w  e.  B  ( A. z  e.  B  (
z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w ) )
5554adantlr 720 . . . . 5  |-  ( ( ( ph  /\  x  e.  B )  /\  x  =  X )  ->  A. w  e.  B  ( A. z  e.  B  (
z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w ) )
5642, 55jca 535 . . . 4  |-  ( ( ( ph  /\  x  e.  B )  /\  x  =  X )  ->  ( A. z  e.  B  ( z  .<_  X  -> 
z  .<_  x )  /\  A. w  e.  B  ( A. z  e.  B  ( z  .<_  X  -> 
z  .<_  w )  ->  x  .<_  w ) ) )
5756ex 436 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  =  X  -> 
( A. z  e.  B  ( z  .<_  X  ->  z  .<_  x )  /\  A. w  e.  B  ( A. z  e.  B  ( z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w ) ) ) )
5838, 57impbid 194 . 2  |-  ( (
ph  /\  x  e.  B )  ->  (
( A. z  e.  B  ( z  .<_  X  ->  z  .<_  x )  /\  A. w  e.  B  ( A. z  e.  B  ( z  .<_  X  ->  z  .<_  w )  ->  x  .<_  w ) )  <->  x  =  X ) )
596, 58syl5bb 261 1  |-  ( (
ph  /\  x  e.  B )  ->  (
( A. z  e. 
{ y  e.  B  |  y  .<_  X }
z  .<_  x  /\  A. w  e.  B  ( A. z  e.  { y  e.  B  |  y 
.<_  X } z  .<_  w  ->  x  .<_  w ) )  <->  x  =  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869   A.wral 2776   {crab 2780   class class class wbr 4421   ` cfv 5599   Basecbs 15114   lecple 15190   Posetcpo 16178   lubclub 16180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-nul 4553
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-rab 2785  df-v 3084  df-sbc 3301  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-br 4422  df-iota 5563  df-fv 5607  df-preset 16166  df-poset 16184
This theorem is referenced by:  lublecl  16228  lubid  16229
  Copyright terms: Public domain W3C validator