MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubeu Structured version   Unicode version

Theorem lubeu 15145
Description: Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubval.b  |-  B  =  ( Base `  K
)
lubval.l  |-  .<_  =  ( le `  K )
lubval.u  |-  U  =  ( lub `  K
)
lubval.p  |-  ( ps  <->  ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) ) )
lubval.k  |-  ( ph  ->  K  e.  V )
lubeleu.s  |-  ( ph  ->  S  e.  dom  U
)
Assertion
Ref Expression
lubeu  |-  ( ph  ->  E! x  e.  B  ps )
Distinct variable groups:    x, z, B    x, y, K, z   
x, S, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)    B( y)    U( x, y, z)    .<_ ( x, y, z)    V( x, y, z)

Proof of Theorem lubeu
StepHypRef Expression
1 lubeleu.s . . 3  |-  ( ph  ->  S  e.  dom  U
)
2 lubval.b . . . 4  |-  B  =  ( Base `  K
)
3 lubval.l . . . 4  |-  .<_  =  ( le `  K )
4 lubval.u . . . 4  |-  U  =  ( lub `  K
)
5 lubval.p . . . 4  |-  ( ps  <->  ( A. y  e.  S  y  .<_  x  /\  A. z  e.  B  ( A. y  e.  S  y  .<_  z  ->  x  .<_  z ) ) )
6 lubval.k . . . 4  |-  ( ph  ->  K  e.  V )
72, 3, 4, 5, 6lubeldm 15143 . . 3  |-  ( ph  ->  ( S  e.  dom  U  <-> 
( S  C_  B  /\  E! x  e.  B  ps ) ) )
81, 7mpbid 210 . 2  |-  ( ph  ->  ( S  C_  B  /\  E! x  e.  B  ps ) )
98simprd 463 1  |-  ( ph  ->  E! x  e.  B  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   E!wreu 2712    C_ wss 3323   class class class wbr 4287   dom cdm 4835   ` cfv 5413   Basecbs 14166   lecple 14237   lubclub 15104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-lub 15136
This theorem is referenced by:  lubval  15146  lubcl  15147  lubprop  15148  joineu  15172
  Copyright terms: Public domain W3C validator