MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltweuz Structured version   Unicode version

Theorem ltweuz 11780
Description:  < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
ltweuz  |-  <  We  ( ZZ>= `  A )

Proof of Theorem ltweuz
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 6484 . . . . 5  |-  Ord  om
2 ordwe 4728 . . . . 5  |-  ( Ord 
om  ->  _E  We  om )
31, 2ax-mp 5 . . . 4  |-  _E  We  om
4 rdgeq2 6864 . . . . . . . . 9  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  ->  rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  =  rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) ) )
54reseq1d 5105 . . . . . . . 8  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om ) )
6 isoeq1 6007 . . . . . . . 8  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  =  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) )  <-> 
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A ) ) ) )
75, 6syl 16 . . . . . . 7  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  A
)  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A
) )  <->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) ) ) )
8 fveq2 5688 . . . . . . . 8  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( ZZ>= `  A )  =  ( ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) )
9 isoeq5 6011 . . . . . . . 8  |-  ( (
ZZ>= `  A )  =  ( ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) )  <-> 
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) ) ) )
108, 9syl 16 . . . . . . 7  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A ) )  <->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) ) ) )
11 0z 10653 . . . . . . . . 9  |-  0  e.  ZZ
1211elimel 3849 . . . . . . . 8  |-  if ( A  e.  ZZ ,  A ,  0 )  e.  ZZ
13 eqid 2441 . . . . . . . 8  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  =  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )
1412, 13om2uzisoi 11773 . . . . . . 7  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) )
157, 10, 14dedth2v 3842 . . . . . 6  |-  ( A  e.  ZZ  ->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A ) ) )
16 isocnv 6018 . . . . . 6  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) )  ->  `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  Isom  <  ,  _E  (
( ZZ>= `  A ) ,  om ) )
1715, 16syl 16 . . . . 5  |-  ( A  e.  ZZ  ->  `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  Isom  <  ,  _E  ( ( ZZ>= `  A
) ,  om )
)
18 dmres 5128 . . . . . . . 8  |-  dom  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  =  ( om  i^i  dom 
rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A ) )
19 omex 7845 . . . . . . . . 9  |-  om  e.  _V
2019inex1 4430 . . . . . . . 8  |-  ( om 
i^i  dom  rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A ) )  e.  _V
2118, 20eqeltri 2511 . . . . . . 7  |-  dom  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  e.  _V
22 cnvimass 5186 . . . . . . 7  |-  ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om ) " y
)  C_  dom  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )
2321, 22ssexi 4434 . . . . . 6  |-  ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om ) " y
)  e.  _V
2423ax-gen 1596 . . . . 5  |-  A. y
( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om ) " y )  e. 
_V
25 isowe2 6038 . . . . 5  |-  ( ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  A
)  |`  om )  Isom  <  ,  _E  ( ( ZZ>=
`  A ) ,  om )  /\  A. y ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om ) " y )  e.  _V )  -> 
(  _E  We  om  ->  <  We  ( ZZ>= `  A ) ) )
2617, 24, 25sylancl 657 . . . 4  |-  ( A  e.  ZZ  ->  (  _E  We  om  ->  <  We  ( ZZ>= `  A )
) )
273, 26mpi 17 . . 3  |-  ( A  e.  ZZ  ->  <  We  ( ZZ>= `  A )
)
28 uzf 10860 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
2928fdmi 5561 . . 3  |-  dom  ZZ>=  =  ZZ
3027, 29eleq2s 2533 . 2  |-  ( A  e.  dom  ZZ>=  ->  <  We  ( ZZ>= `  A )
)
31 we0 4711 . . 3  |-  <  We  (/)
32 ndmfv 5711 . . . 4  |-  ( -.  A  e.  dom  ZZ>=  -> 
( ZZ>= `  A )  =  (/) )
33 weeq2 4705 . . . 4  |-  ( (
ZZ>= `  A )  =  (/)  ->  (  <  We  ( ZZ>= `  A )  <->  < 
We  (/) ) )
3432, 33syl 16 . . 3  |-  ( -.  A  e.  dom  ZZ>=  -> 
(  <  We  ( ZZ>=
`  A )  <->  <  We  (/) ) )
3531, 34mpbiri 233 . 2  |-  ( -.  A  e.  dom  ZZ>=  ->  <  We  ( ZZ>= `  A
) )
3630, 35pm2.61i 164 1  |-  <  We  ( ZZ>= `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184   A.wal 1362    = wceq 1364    e. wcel 1761   _Vcvv 2970    i^i cin 3324   (/)c0 3634   ifcif 3788   ~Pcpw 3857    e. cmpt 4347    _E cep 4626    We wwe 4674   Ord word 4714   `'ccnv 4835   dom cdm 4836    |` cres 4838   "cima 4839   ` cfv 5415    Isom wiso 5416  (class class class)co 6090   omcom 6475   reccrdg 6861   0cc0 9278   1c1 9279    + caddc 9281    < clt 9414   ZZcz 10642   ZZ>=cuz 10857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858
This theorem is referenced by:  ltwenn  11781  ltwefz  11782  ltbwe  17530  dyadmax  21037  uzsinds  27606  bpolylem  28120
  Copyright terms: Public domain W3C validator