MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltweuz Structured version   Unicode version

Theorem ltweuz 11789
Description:  < is a well-founded relation on any sequence of upper integers. (Contributed by Andrew Salmon, 13-Nov-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
ltweuz  |-  <  We  ( ZZ>= `  A )

Proof of Theorem ltweuz
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 6490 . . . . 5  |-  Ord  om
2 ordwe 4737 . . . . 5  |-  ( Ord 
om  ->  _E  We  om )
31, 2ax-mp 5 . . . 4  |-  _E  We  om
4 rdgeq2 6873 . . . . . . . . 9  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  ->  rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  =  rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) ) )
54reseq1d 5114 . . . . . . . 8  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om ) )
6 isoeq1 6015 . . . . . . . 8  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  =  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  ->  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) )  <-> 
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A ) ) ) )
75, 6syl 16 . . . . . . 7  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  A
)  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A
) )  <->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) ) ) )
8 fveq2 5696 . . . . . . . 8  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( ZZ>= `  A )  =  ( ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) )
9 isoeq5 6019 . . . . . . . 8  |-  ( (
ZZ>= `  A )  =  ( ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) )  <-> 
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) ) ) )
108, 9syl 16 . . . . . . 7  |-  ( A  =  if ( A  e.  ZZ ,  A ,  0 )  -> 
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  if ( A  e.  ZZ ,  A ,  0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A ) )  <->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) ) ) )
11 0z 10662 . . . . . . . . 9  |-  0  e.  ZZ
1211elimel 3857 . . . . . . . 8  |-  if ( A  e.  ZZ ,  A ,  0 )  e.  ZZ
13 eqid 2443 . . . . . . . 8  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  =  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )
1412, 13om2uzisoi 11782 . . . . . . 7  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  if ( A  e.  ZZ ,  A , 
0 ) )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  if ( A  e.  ZZ ,  A ,  0 ) ) )
157, 10, 14dedth2v 3850 . . . . . 6  |-  ( A  e.  ZZ  ->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  Isom  _E  ,  <  ( om ,  ( ZZ>= `  A ) ) )
16 isocnv 6026 . . . . . 6  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  Isom  _E  ,  <  ( om ,  (
ZZ>= `  A ) )  ->  `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  Isom  <  ,  _E  (
( ZZ>= `  A ) ,  om ) )
1715, 16syl 16 . . . . 5  |-  ( A  e.  ZZ  ->  `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )  Isom  <  ,  _E  ( ( ZZ>= `  A
) ,  om )
)
18 dmres 5136 . . . . . . . 8  |-  dom  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  =  ( om  i^i  dom 
rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A ) )
19 omex 7854 . . . . . . . . 9  |-  om  e.  _V
2019inex1 4438 . . . . . . . 8  |-  ( om 
i^i  dom  rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A ) )  e.  _V
2118, 20eqeltri 2513 . . . . . . 7  |-  dom  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )  e.  _V
22 cnvimass 5194 . . . . . . 7  |-  ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om ) " y
)  C_  dom  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om )
2321, 22ssexi 4442 . . . . . 6  |-  ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om ) " y
)  e.  _V
2423ax-gen 1591 . . . . 5  |-  A. y
( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  A )  |`  om ) " y )  e. 
_V
25 isowe2 6046 . . . . 5  |-  ( ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  A
)  |`  om )  Isom  <  ,  _E  ( ( ZZ>=
`  A ) ,  om )  /\  A. y ( `' ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om ) " y )  e.  _V )  -> 
(  _E  We  om  ->  <  We  ( ZZ>= `  A ) ) )
2617, 24, 25sylancl 662 . . . 4  |-  ( A  e.  ZZ  ->  (  _E  We  om  ->  <  We  ( ZZ>= `  A )
) )
273, 26mpi 17 . . 3  |-  ( A  e.  ZZ  ->  <  We  ( ZZ>= `  A )
)
28 uzf 10869 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
2928fdmi 5569 . . 3  |-  dom  ZZ>=  =  ZZ
3027, 29eleq2s 2535 . 2  |-  ( A  e.  dom  ZZ>=  ->  <  We  ( ZZ>= `  A )
)
31 we0 4720 . . 3  |-  <  We  (/)
32 ndmfv 5719 . . . 4  |-  ( -.  A  e.  dom  ZZ>=  -> 
( ZZ>= `  A )  =  (/) )
33 weeq2 4714 . . . 4  |-  ( (
ZZ>= `  A )  =  (/)  ->  (  <  We  ( ZZ>= `  A )  <->  < 
We  (/) ) )
3432, 33syl 16 . . 3  |-  ( -.  A  e.  dom  ZZ>=  -> 
(  <  We  ( ZZ>=
`  A )  <->  <  We  (/) ) )
3531, 34mpbiri 233 . 2  |-  ( -.  A  e.  dom  ZZ>=  ->  <  We  ( ZZ>= `  A
) )
3630, 35pm2.61i 164 1  |-  <  We  ( ZZ>= `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184   A.wal 1367    = wceq 1369    e. wcel 1756   _Vcvv 2977    i^i cin 3332   (/)c0 3642   ifcif 3796   ~Pcpw 3865    e. cmpt 4355    _E cep 4635    We wwe 4683   Ord word 4723   `'ccnv 4844   dom cdm 4845    |` cres 4847   "cima 4848   ` cfv 5423    Isom wiso 5424  (class class class)co 6096   omcom 6481   reccrdg 6870   0cc0 9287   1c1 9288    + caddc 9290    < clt 9423   ZZcz 10651   ZZ>=cuz 10866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-n0 10585  df-z 10652  df-uz 10867
This theorem is referenced by:  ltwenn  11790  ltwefz  11791  ltbwe  17559  dyadmax  21083  uzsinds  27682  bpolylem  28196
  Copyright terms: Public domain W3C validator