MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lttri3d Structured version   Unicode version

Theorem lttri3d 9626
Description: Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
lttri3d  |-  ( ph  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )

Proof of Theorem lttri3d
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 lttri3 9570 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
41, 2, 3syl2anc 661 1  |-  ( ph  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   class class class wbr 4401   RRcr 9393    < clt 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-resscn 9451  ax-pre-lttri 9468  ax-pre-lttrn 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-po 4750  df-so 4751  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-ltxr 9535
This theorem is referenced by:  readdcan  9655  ivthlem3  21070  oddpwdc  26882  fvmptnn04ifc  31339  fvmptnn04ifd  31340
  Copyright terms: Public domain W3C validator