![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lttr | Structured version Visualization version Unicode version |
Description: Alias for axlttrn 9737, for naming consistency with lttri 9791. New proofs should generally use this instead of ax-pre-lttrn 9645. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
lttr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttrn 9737 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-8 1900 ax-9 1907 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 ax-ext 2442 ax-sep 4541 ax-nul 4550 ax-pow 4598 ax-pr 4656 ax-un 6615 ax-resscn 9627 ax-pre-lttrn 9645 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3an 993 df-tru 1458 df-ex 1675 df-nf 1679 df-sb 1809 df-eu 2314 df-mo 2315 df-clab 2449 df-cleq 2455 df-clel 2458 df-nfc 2592 df-ne 2635 df-nel 2636 df-ral 2754 df-rex 2755 df-rab 2758 df-v 3059 df-sbc 3280 df-csb 3376 df-dif 3419 df-un 3421 df-in 3423 df-ss 3430 df-nul 3744 df-if 3894 df-pw 3965 df-sn 3981 df-pr 3983 df-op 3987 df-uni 4213 df-br 4419 df-opab 4478 df-mpt 4479 df-id 4771 df-xp 4862 df-rel 4863 df-cnv 4864 df-co 4865 df-dm 4866 df-rn 4867 df-res 4868 df-ima 4869 df-iota 5569 df-fun 5607 df-fn 5608 df-f 5609 df-f1 5610 df-fo 5611 df-f1o 5612 df-fv 5613 df-er 7394 df-en 7601 df-dom 7602 df-sdom 7603 df-pnf 9708 df-mnf 9709 df-ltxr 9711 |
This theorem is referenced by: ltso 9745 lelttr 9755 ltletr 9756 lttri 9791 lttrd 9827 lt2sub 10145 mulgt1 10497 recgt1i 10536 recreclt 10538 sup2 10598 nnge1 10668 recnz 11045 gtndiv 11047 xrlttr 11473 fzo1fzo0n0 11994 flflp1 12081 1mod 12167 seqf1olem1 12290 expnbnd 12439 expnlbnd 12440 swrd2lsw 13082 2swrd2eqwrdeq 13083 sin01gt0 14299 cos01gt0 14300 chfacfscmul0 19937 chfacfpmmul0 19941 iscmet3lem1 22316 bcthlem4 22350 bcthlem5 22351 ivthlem2 22458 ovolicc2lem3 22527 mbfaddlem 22672 reeff1olem 23457 logdivlti 23625 logblog 23785 ftalem2 24054 chtub 24196 bclbnd 24264 efexple 24265 bposlem1 24268 lgsquadlem2 24339 pntlem3 24503 axlowdimlem16 25043 wwlknredwwlkn 25510 clwwlkel 25577 numclwwlkovf2ex 25870 frgraogt3nreg 25904 poimirlem2 31988 stoweidlem34 37996 smonoord 38853 m1mod0mod1 38858 sgoldbalt 39017 bgoldbtbndlem3 39037 bgoldbtbndlem4 39038 tgoldbach 39046 pthdlem1 39888 difmodm1lt 40694 nno 40697 regt1loggt0 40716 rege1logbrege0 40738 dignn0flhalflem1 40795 |
Copyright terms: Public domain | W3C validator |