MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsopr Structured version   Unicode version

Theorem ltsopr 9201
Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltsopr  |-  <P  Or  P.

Proof of Theorem ltsopr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssirr 3456 . . . 4  |-  -.  x  C.  x
2 ltprord 9199 . . . 4  |-  ( ( x  e.  P.  /\  x  e.  P. )  ->  ( x  <P  x  <->  x 
C.  x ) )
31, 2mtbiri 303 . . 3  |-  ( ( x  e.  P.  /\  x  e.  P. )  ->  -.  x  <P  x
)
43anidms 645 . 2  |-  ( x  e.  P.  ->  -.  x  <P  x )
5 psstr 3460 . . 3  |-  ( ( x  C.  y  /\  y  C.  z )  ->  x  C.  z )
6 ltprord 9199 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  <P  y  <->  x 
C.  y ) )
763adant3 1008 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  y  <->  x  C.  y
) )
8 ltprord 9199 . . . . . 6  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  <P  z  <->  y 
C.  z ) )
983adant1 1006 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
y  <P  z  <->  y  C.  z
) )
107, 9anbi12d 710 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
( x  <P  y  /\  y  <P  z )  <-> 
( x  C.  y  /\  y  C.  z ) ) )
11 ltprord 9199 . . . . 5  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  <P  z  <->  x 
C.  z ) )
12113adant2 1007 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
x  <P  z  <->  x  C.  z
) )
1310, 12imbi12d 320 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
( ( x  <P  y  /\  y  <P  z
)  ->  x  <P  z )  <->  ( ( x 
C.  y  /\  y  C.  z )  ->  x  C.  z ) ) )
145, 13mpbiri 233 . 2  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
( x  <P  y  /\  y  <P  z )  ->  x  <P  z
) )
15 psslinpr 9200 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  C.  y  \/  x  =  y  \/  y  C.  x ) )
16 biidd 237 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  =  y  <-> 
x  =  y ) )
17 ltprord 9199 . . . . 5  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  <P  x  <->  y 
C.  x ) )
1817ancoms 453 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( y  <P  x  <->  y 
C.  x ) )
196, 16, 183orbi123d 1288 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  <P  y  \/  x  =  y  \/  y  <P  x
)  <->  ( x  C.  y  \/  x  =  y  \/  y  C.  x
) ) )
2015, 19mpbird 232 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  <P  y  \/  x  =  y  \/  y  <P  x ) )
214, 14, 20issoi 4672 1  |-  <P  Or  P.
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 964    /\ w3a 965    e. wcel 1756    C. wpss 3329   class class class wbr 4292    Or wor 4640   P.cnp 9026    <P cltp 9030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-oadd 6924  df-omul 6925  df-er 7101  df-ni 9041  df-mi 9043  df-lti 9044  df-ltpq 9079  df-enq 9080  df-nq 9081  df-ltnq 9087  df-np 9150  df-ltp 9154
This theorem is referenced by:  ltapr  9214  addcanpr  9215  suplem2pr  9222  ltsosr  9261
  Copyright terms: Public domain W3C validator