Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnu Structured version   Unicode version

Theorem ltrnu 33770
Description: Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom  W. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnu.l  |-  .<_  =  ( le `  K )
ltrnu.j  |-  .\/  =  ( join `  K )
ltrnu.m  |-  ./\  =  ( meet `  K )
ltrnu.a  |-  A  =  ( Atoms `  K )
ltrnu.h  |-  H  =  ( LHyp `  K
)
ltrnu.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnu  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  Q ) )  ./\  W ) )

Proof of Theorem ltrnu
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 820 . . 3  |-  ( ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  <->  ( ( P  e.  A  /\  Q  e.  A )  /\  ( -.  P  .<_  W  /\  -.  Q  .<_  W ) ) )
2 simpr 461 . . . . 5  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  ( P  e.  A  /\  Q  e.  A ) )
3 simplr 754 . . . . . 6  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  F  e.  T )
4 ltrnu.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
5 ltrnu.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
6 ltrnu.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
7 ltrnu.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
8 ltrnu.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
9 eqid 2443 . . . . . . . . 9  |-  ( (
LDil `  K ) `  W )  =  ( ( LDil `  K
) `  W )
10 ltrnu.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
114, 5, 6, 7, 8, 9, 10isltrn 33768 . . . . . . . 8  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  ( (
LDil `  K ) `  W )  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
1211ad2antrr 725 . . . . . . 7  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  ( F  e.  T  <->  ( F  e.  ( ( LDil `  K
) `  W )  /\  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
13 simpr 461 . . . . . . 7  |-  ( ( F  e.  ( (
LDil `  K ) `  W )  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )  ->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )
1412, 13syl6bi 228 . . . . . 6  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  ( F  e.  T  ->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
153, 14mpd 15 . . . . 5  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
16 breq1 4300 . . . . . . . . 9  |-  ( p  =  P  ->  (
p  .<_  W  <->  P  .<_  W ) )
1716notbid 294 . . . . . . . 8  |-  ( p  =  P  ->  ( -.  p  .<_  W  <->  -.  P  .<_  W ) )
1817anbi1d 704 . . . . . . 7  |-  ( p  =  P  ->  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  <->  ( -.  P  .<_  W  /\  -.  q  .<_  W ) ) )
19 id 22 . . . . . . . . . 10  |-  ( p  =  P  ->  p  =  P )
20 fveq2 5696 . . . . . . . . . 10  |-  ( p  =  P  ->  ( F `  p )  =  ( F `  P ) )
2119, 20oveq12d 6114 . . . . . . . . 9  |-  ( p  =  P  ->  (
p  .\/  ( F `  p ) )  =  ( P  .\/  ( F `  P )
) )
2221oveq1d 6111 . . . . . . . 8  |-  ( p  =  P  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )
2322eqeq1d 2451 . . . . . . 7  |-  ( p  =  P  ->  (
( ( p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  <->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
2418, 23imbi12d 320 . . . . . 6  |-  ( p  =  P  ->  (
( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  <->  ( ( -.  P  .<_  W  /\  -.  q  .<_  W )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
25 breq1 4300 . . . . . . . . 9  |-  ( q  =  Q  ->  (
q  .<_  W  <->  Q  .<_  W ) )
2625notbid 294 . . . . . . . 8  |-  ( q  =  Q  ->  ( -.  q  .<_  W  <->  -.  Q  .<_  W ) )
2726anbi2d 703 . . . . . . 7  |-  ( q  =  Q  ->  (
( -.  P  .<_  W  /\  -.  q  .<_  W )  <->  ( -.  P  .<_  W  /\  -.  Q  .<_  W ) ) )
28 id 22 . . . . . . . . . 10  |-  ( q  =  Q  ->  q  =  Q )
29 fveq2 5696 . . . . . . . . . 10  |-  ( q  =  Q  ->  ( F `  q )  =  ( F `  Q ) )
3028, 29oveq12d 6114 . . . . . . . . 9  |-  ( q  =  Q  ->  (
q  .\/  ( F `  q ) )  =  ( Q  .\/  ( F `  Q )
) )
3130oveq1d 6111 . . . . . . . 8  |-  ( q  =  Q  ->  (
( q  .\/  ( F `  q )
)  ./\  W )  =  ( ( Q 
.\/  ( F `  Q ) )  ./\  W ) )
3231eqeq2d 2454 . . . . . . 7  |-  ( q  =  Q  ->  (
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  <->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) ) )
3327, 32imbi12d 320 . . . . . 6  |-  ( q  =  Q  ->  (
( ( -.  P  .<_  W  /\  -.  q  .<_  W )  ->  (
( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  <->  ( ( -.  P  .<_  W  /\  -.  Q  .<_  W )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) ) ) )
3424, 33rspc2v 3084 . . . . 5  |-  ( ( P  e.  A  /\  Q  e.  A )  ->  ( A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  ->  ( ( -.  P  .<_  W  /\  -.  Q  .<_  W )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) ) ) )
352, 15, 34sylc 60 . . . 4  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  ( ( -.  P  .<_  W  /\  -.  Q  .<_  W )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) ) )
3635impr 619 . . 3  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  (
( P  e.  A  /\  Q  e.  A
)  /\  ( -.  P  .<_  W  /\  -.  Q  .<_  W ) ) )  ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) )
371, 36sylan2b 475 . 2  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) )
38373impb 1183 1  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  Q ) )  ./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   lecple 14250   joincjn 15119   meetcmee 15120   Atomscatm 32913   LHypclh 33633   LDilcldil 33749   LTrncltrn 33750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pr 4536
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-ltrn 33754
This theorem is referenced by:  ltrncnv  33795  trlval2  33812  cdlemg14f  34302  cdlemg14g  34303
  Copyright terms: Public domain W3C validator