MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrnq Structured version   Unicode version

Theorem ltrnq 9374
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrnq  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )

Proof of Theorem ltrnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 9321 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
21brel 5057 . 2  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
31brel 5057 . . 3  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( ( *Q `  B )  e. 
Q.  /\  ( *Q `  A )  e.  Q. ) )
4 dmrecnq 9363 . . . . 5  |-  dom  *Q  =  Q.
5 0nnq 9319 . . . . 5  |-  -.  (/)  e.  Q.
64, 5ndmfvrcl 5897 . . . 4  |-  ( ( *Q `  B )  e.  Q.  ->  B  e.  Q. )
74, 5ndmfvrcl 5897 . . . 4  |-  ( ( *Q `  A )  e.  Q.  ->  A  e.  Q. )
86, 7anim12ci 567 . . 3  |-  ( ( ( *Q `  B
)  e.  Q.  /\  ( *Q `  A )  e.  Q. )  -> 
( A  e.  Q.  /\  B  e.  Q. )
)
93, 8syl 16 . 2  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( A  e.  Q.  /\  B  e. 
Q. ) )
10 breq1 4459 . . . 4  |-  ( x  =  A  ->  (
x  <Q  y  <->  A  <Q  y ) )
11 fveq2 5872 . . . . 5  |-  ( x  =  A  ->  ( *Q `  x )  =  ( *Q `  A
) )
1211breq2d 4468 . . . 4  |-  ( x  =  A  ->  (
( *Q `  y
)  <Q  ( *Q `  x )  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) )
1310, 12bibi12d 321 . . 3  |-  ( x  =  A  ->  (
( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) )  <->  ( A  <Q  y  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) ) )
14 breq2 4460 . . . 4  |-  ( y  =  B  ->  ( A  <Q  y  <->  A  <Q  B ) )
15 fveq2 5872 . . . . 5  |-  ( y  =  B  ->  ( *Q `  y )  =  ( *Q `  B
) )
1615breq1d 4466 . . . 4  |-  ( y  =  B  ->  (
( *Q `  y
)  <Q  ( *Q `  A )  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
1714, 16bibi12d 321 . . 3  |-  ( y  =  B  ->  (
( A  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  A
) )  <->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) ) )
18 recclnq 9361 . . . . . 6  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
19 recclnq 9361 . . . . . 6  |-  ( y  e.  Q.  ->  ( *Q `  y )  e. 
Q. )
20 mulclnq 9342 . . . . . 6  |-  ( ( ( *Q `  x
)  e.  Q.  /\  ( *Q `  y )  e.  Q. )  -> 
( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
2118, 19, 20syl2an 477 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
22 ltmnq 9367 . . . . 5  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  e.  Q.  ->  (
x  <Q  y  <->  ( (
( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
2321, 22syl 16 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
24 mulcomnq 9348 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
25 mulassnq 9354 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
26 mulcomnq 9348 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
2724, 25, 263eqtr2i 2492 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
28 recidnq 9360 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
2928oveq2d 6312 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  y
)  .Q  ( x  .Q  ( *Q `  x ) ) )  =  ( ( *Q
`  y )  .Q  1Q ) )
30 mulidnq 9358 . . . . . . . 8  |-  ( ( *Q `  y )  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3119, 30syl 16 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3229, 31sylan9eq 2518 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )  =  ( *Q
`  y ) )
3327, 32syl5eq 2510 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  x
)  =  ( *Q
`  y ) )
34 mulassnq 9354 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
( *Q `  y
)  .Q  y ) )
35 mulcomnq 9348 . . . . . . . 8  |-  ( ( *Q `  y )  .Q  y )  =  ( y  .Q  ( *Q `  y ) )
3635oveq2i 6307 . . . . . . 7  |-  ( ( *Q `  x )  .Q  ( ( *Q
`  y )  .Q  y ) )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
3734, 36eqtri 2486 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
38 recidnq 9360 . . . . . . . 8  |-  ( y  e.  Q.  ->  (
y  .Q  ( *Q
`  y ) )  =  1Q )
3938oveq2d 6312 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  x
)  .Q  ( y  .Q  ( *Q `  y ) ) )  =  ( ( *Q
`  x )  .Q  1Q ) )
40 mulidnq 9358 . . . . . . . 8  |-  ( ( *Q `  x )  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4118, 40syl 16 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4239, 41sylan9eqr 2520 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )  =  ( *Q
`  x ) )
4337, 42syl5eq 2510 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
)  =  ( *Q
`  x ) )
4433, 43breq12d 4469 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q  (
( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  y )  <->  ( *Q `  y )  <Q  ( *Q `  x ) ) )
4523, 44bitrd 253 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) ) )
4613, 17, 45vtocl2ga 3175 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
472, 9, 46pm5.21nii 353 1  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Q.cnq 9247   1Qc1q 9248    .Q cmq 9251   *Qcrq 9252    <Q cltq 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-omul 7153  df-er 7329  df-ni 9267  df-mi 9269  df-lti 9270  df-mpq 9304  df-ltpq 9305  df-enq 9306  df-nq 9307  df-erq 9308  df-mq 9310  df-1nq 9311  df-rq 9312  df-ltnq 9313
This theorem is referenced by:  addclprlem1  9411  reclem2pr  9443  reclem3pr  9444
  Copyright terms: Public domain W3C validator