MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrnq Structured version   Visualization version   Unicode version

Theorem ltrnq 9401
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrnq  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )

Proof of Theorem ltrnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 9348 . . 3  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4882 . 2  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
31brel 4882 . . 3  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( ( *Q `  B )  e. 
Q.  /\  ( *Q `  A )  e.  Q. ) )
4 dmrecnq 9390 . . . . 5  |-  dom  *Q  =  Q.
5 0nnq 9346 . . . . 5  |-  -.  (/)  e.  Q.
64, 5ndmfvrcl 5888 . . . 4  |-  ( ( *Q `  B )  e.  Q.  ->  B  e.  Q. )
74, 5ndmfvrcl 5888 . . . 4  |-  ( ( *Q `  A )  e.  Q.  ->  A  e.  Q. )
86, 7anim12ci 570 . . 3  |-  ( ( ( *Q `  B
)  e.  Q.  /\  ( *Q `  A )  e.  Q. )  -> 
( A  e.  Q.  /\  B  e.  Q. )
)
93, 8syl 17 . 2  |-  ( ( *Q `  B ) 
<Q  ( *Q `  A
)  ->  ( A  e.  Q.  /\  B  e. 
Q. ) )
10 breq1 4404 . . . 4  |-  ( x  =  A  ->  (
x  <Q  y  <->  A  <Q  y ) )
11 fveq2 5863 . . . . 5  |-  ( x  =  A  ->  ( *Q `  x )  =  ( *Q `  A
) )
1211breq2d 4413 . . . 4  |-  ( x  =  A  ->  (
( *Q `  y
)  <Q  ( *Q `  x )  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) )
1310, 12bibi12d 323 . . 3  |-  ( x  =  A  ->  (
( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) )  <->  ( A  <Q  y  <->  ( *Q `  y )  <Q  ( *Q `  A ) ) ) )
14 breq2 4405 . . . 4  |-  ( y  =  B  ->  ( A  <Q  y  <->  A  <Q  B ) )
15 fveq2 5863 . . . . 5  |-  ( y  =  B  ->  ( *Q `  y )  =  ( *Q `  B
) )
1615breq1d 4411 . . . 4  |-  ( y  =  B  ->  (
( *Q `  y
)  <Q  ( *Q `  A )  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
1714, 16bibi12d 323 . . 3  |-  ( y  =  B  ->  (
( A  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  A
) )  <->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) ) )
18 recclnq 9388 . . . . . 6  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
19 recclnq 9388 . . . . . 6  |-  ( y  e.  Q.  ->  ( *Q `  y )  e. 
Q. )
20 mulclnq 9369 . . . . . 6  |-  ( ( ( *Q `  x
)  e.  Q.  /\  ( *Q `  y )  e.  Q. )  -> 
( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
2118, 19, 20syl2an 480 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  ( *Q `  y ) )  e.  Q. )
22 ltmnq 9394 . . . . 5  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  e.  Q.  ->  (
x  <Q  y  <->  ( (
( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
2321, 22syl 17 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q 
( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
) ) )
24 mulcomnq 9375 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
25 mulassnq 9381 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( x  .Q  (
( *Q `  x
)  .Q  ( *Q
`  y ) ) )
26 mulcomnq 9375 . . . . . . 7  |-  ( ( x  .Q  ( *Q
`  x ) )  .Q  ( *Q `  y ) )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
2724, 25, 263eqtr2i 2478 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  x )  =  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )
28 recidnq 9387 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
2928oveq2d 6304 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  y
)  .Q  ( x  .Q  ( *Q `  x ) ) )  =  ( ( *Q
`  y )  .Q  1Q ) )
30 mulidnq 9385 . . . . . . . 8  |-  ( ( *Q `  y )  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3119, 30syl 17 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  y
)  .Q  1Q )  =  ( *Q `  y ) )
3229, 31sylan9eq 2504 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  y )  .Q  (
x  .Q  ( *Q
`  x ) ) )  =  ( *Q
`  y ) )
3327, 32syl5eq 2496 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  x
)  =  ( *Q
`  y ) )
34 mulassnq 9381 . . . . . . 7  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
( *Q `  y
)  .Q  y ) )
35 mulcomnq 9375 . . . . . . . 8  |-  ( ( *Q `  y )  .Q  y )  =  ( y  .Q  ( *Q `  y ) )
3635oveq2i 6299 . . . . . . 7  |-  ( ( *Q `  x )  .Q  ( ( *Q
`  y )  .Q  y ) )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
3734, 36eqtri 2472 . . . . . 6  |-  ( ( ( *Q `  x
)  .Q  ( *Q
`  y ) )  .Q  y )  =  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )
38 recidnq 9387 . . . . . . . 8  |-  ( y  e.  Q.  ->  (
y  .Q  ( *Q
`  y ) )  =  1Q )
3938oveq2d 6304 . . . . . . 7  |-  ( y  e.  Q.  ->  (
( *Q `  x
)  .Q  ( y  .Q  ( *Q `  y ) ) )  =  ( ( *Q
`  x )  .Q  1Q ) )
40 mulidnq 9385 . . . . . . . 8  |-  ( ( *Q `  x )  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4118, 40syl 17 . . . . . . 7  |-  ( x  e.  Q.  ->  (
( *Q `  x
)  .Q  1Q )  =  ( *Q `  x ) )
4239, 41sylan9eqr 2506 . . . . . 6  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  x )  .Q  (
y  .Q  ( *Q
`  y ) ) )  =  ( *Q
`  x ) )
4337, 42syl5eq 2496 . . . . 5  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( *Q
`  x )  .Q  ( *Q `  y
) )  .Q  y
)  =  ( *Q
`  x ) )
4433, 43breq12d 4414 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( ( ( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  x )  <Q  (
( ( *Q `  x )  .Q  ( *Q `  y ) )  .Q  y )  <->  ( *Q `  y )  <Q  ( *Q `  x ) ) )
4523, 44bitrd 257 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  y  <->  ( *Q `  y ) 
<Q  ( *Q `  x
) ) )
4613, 17, 45vtocl2ga 3114 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) ) )
472, 9, 46pm5.21nii 355 1  |-  ( A 
<Q  B  <->  ( *Q `  B )  <Q  ( *Q `  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886   class class class wbr 4401   ` cfv 5581  (class class class)co 6288   Q.cnq 9274   1Qc1q 9275    .Q cmq 9278   *Qcrq 9279    <Q cltq 9280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-omul 7184  df-er 7360  df-ni 9294  df-mi 9296  df-lti 9297  df-mpq 9331  df-ltpq 9332  df-enq 9333  df-nq 9334  df-erq 9335  df-mq 9337  df-1nq 9338  df-rq 9339  df-ltnq 9340
This theorem is referenced by:  addclprlem1  9438  reclem2pr  9470  reclem3pr  9471
  Copyright terms: Public domain W3C validator