Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnmw Structured version   Unicode version

Theorem ltrnmw 33800
Description: Property of lattice translation value. Remark below Lemma B in [Crawley] p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnmw.l  |-  .<_  =  ( le `  K )
ltrnmw.m  |-  ./\  =  ( meet `  K )
ltrnmw.z  |-  .0.  =  ( 0. `  K )
ltrnmw.a  |-  A  =  ( Atoms `  K )
ltrnmw.h  |-  H  =  ( LHyp `  K
)
ltrnmw.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnmw  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  ./\  W )  =  .0.  )

Proof of Theorem ltrnmw
StepHypRef Expression
1 simp1 988 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2 989 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
3 simp3l 1016 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
4 eqid 2443 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
5 ltrnmw.a . . . . . 6  |-  A  =  ( Atoms `  K )
64, 5atbase 32939 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
73, 6syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
8 simp1r 1013 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
9 ltrnmw.h . . . . . 6  |-  H  =  ( LHyp `  K
)
104, 9lhpbase 33647 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
118, 10syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
12 ltrnmw.m . . . . 5  |-  ./\  =  ( meet `  K )
13 ltrnmw.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
144, 12, 9, 13ltrnm 33780 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  (
Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( F `  ( P  ./\  W
) )  =  ( ( F `  P
)  ./\  ( F `  W ) ) )
151, 2, 7, 11, 14syl112anc 1222 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  ( P  ./\  W
) )  =  ( ( F `  P
)  ./\  ( F `  W ) ) )
16 simp3r 1017 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  W )
17 simp1l 1012 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
18 hlatl 33010 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
1917, 18syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  AtLat
)
20 ltrnmw.l . . . . . . 7  |-  .<_  =  ( le `  K )
21 ltrnmw.z . . . . . . 7  |-  .0.  =  ( 0. `  K )
224, 20, 12, 21, 5atnle 32967 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  W  e.  ( Base `  K
) )  ->  ( -.  P  .<_  W  <->  ( P  ./\ 
W )  =  .0.  ) )
2319, 3, 11, 22syl3anc 1218 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( -.  P  .<_  W  <->  ( P  ./\ 
W )  =  .0.  ) )
2416, 23mpbid 210 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  ./\ 
W )  =  .0.  )
2524fveq2d 5700 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  ( P  ./\  W
) )  =  ( F `  .0.  )
)
2615, 25eqtr3d 2477 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  ./\  ( F `  W
) )  =  ( F `  .0.  )
)
27 hllat 33013 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
2817, 27syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
294, 20latref 15228 . . . . 5  |-  ( ( K  e.  Lat  /\  W  e.  ( Base `  K ) )  ->  W  .<_  W )
3028, 11, 29syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  .<_  W )
314, 20, 9, 13ltrnval1 33783 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( W  e.  (
Base `  K )  /\  W  .<_  W ) )  ->  ( F `  W )  =  W )
321, 2, 11, 30, 31syl112anc 1222 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  W )  =  W )
3332oveq2d 6112 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  ./\  ( F `  W
) )  =  ( ( F `  P
)  ./\  W )
)
34 hlop 33012 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
3517, 34syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  OP )
364, 21op0cl 32834 . . . 4  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
3735, 36syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  .0.  e.  ( Base `  K )
)
384, 20, 21op0le 32836 . . . 4  |-  ( ( K  e.  OP  /\  W  e.  ( Base `  K ) )  ->  .0.  .<_  W )
3935, 11, 38syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  .0.  .<_  W )
404, 20, 9, 13ltrnval1 33783 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (  .0.  e.  ( Base `  K )  /\  .0.  .<_  W ) )  ->  ( F `  .0.  )  =  .0.  )
411, 2, 37, 39, 40syl112anc 1222 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  .0.  )  =  .0.  )
4226, 33, 413eqtr3d 2483 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  ./\  W )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   Basecbs 14179   lecple 14250   meetcmee 15120   0.cp0 15212   Latclat 15220   OPcops 32822   Atomscatm 32913   AtLatcal 32914   HLchlt 33000   LHypclh 33633   LTrncltrn 33750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-map 7221  df-poset 15121  df-plt 15133  df-lub 15149  df-glb 15150  df-join 15151  df-meet 15152  df-p0 15214  df-lat 15221  df-oposet 32826  df-ol 32828  df-oml 32829  df-covers 32916  df-ats 32917  df-atl 32948  df-cvlat 32972  df-hlat 33001  df-lhyp 33637  df-laut 33638  df-ldil 33753  df-ltrn 33754
This theorem is referenced by:  cdlemg2m  34253
  Copyright terms: Public domain W3C validator