Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotacnvval Structured version   Unicode version

Theorem ltrniotacnvval 35378
Description: Converse value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
ltrniotaval.l  |-  .<_  =  ( le `  K )
ltrniotaval.a  |-  A  =  ( Atoms `  K )
ltrniotaval.h  |-  H  =  ( LHyp `  K
)
ltrniotaval.t  |-  T  =  ( ( LTrn `  K
) `  W )
ltrniotaval.f  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  Q )
Assertion
Ref Expression
ltrniotacnvval  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( `' F `  Q )  =  P )
Distinct variable groups:    A, f    f, H    f, K    .<_ , f    P, f    Q, f    T, f   
f, W
Allowed substitution hint:    F( f)

Proof of Theorem ltrniotacnvval
StepHypRef Expression
1 simp1 996 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 ltrniotaval.l . . . . 5  |-  .<_  =  ( le `  K )
3 ltrniotaval.a . . . . 5  |-  A  =  ( Atoms `  K )
4 ltrniotaval.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 ltrniotaval.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
6 ltrniotaval.f . . . . 5  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  Q )
72, 3, 4, 5, 6ltrniotacl 35375 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
8 eqid 2467 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
98, 4, 5ltrn1o 34920 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
101, 7, 9syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
11 simp2l 1022 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  P  e.  A )
128, 3atbase 34086 . . . 4  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1311, 12syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  P  e.  ( Base `  K )
)
1410, 13jca 532 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  /\  P  e.  ( Base `  K ) ) )
152, 3, 4, 5, 6ltrniotaval 35377 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( F `  P )  =  Q )
16 f1ocnvfv 6170 . 2  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  P  e.  ( Base `  K )
)  ->  ( ( F `  P )  =  Q  ->  ( `' F `  Q )  =  P ) )
1714, 15, 16sylc 60 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( `' F `  Q )  =  P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447   `'ccnv 4998   -1-1-onto->wf1o 5585   ` cfv 5586   iota_crio 6242   Basecbs 14483   lecple 14555   Atomscatm 34060   HLchlt 34147   LHypclh 34780   LTrncltrn 34897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-riotaBAD 33756
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-undef 6999  df-map 7419  df-poset 15426  df-plt 15438  df-lub 15454  df-glb 15455  df-join 15456  df-meet 15457  df-p0 15519  df-p1 15520  df-lat 15526  df-clat 15588  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295  df-lvols 34296  df-lines 34297  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784  df-laut 34785  df-ldil 34900  df-ltrn 34901  df-trl 34955
This theorem is referenced by:  cdlemn9  36002  dihjatcclem3  36217
  Copyright terms: Public domain W3C validator