Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotacnvN Structured version   Unicode version

Theorem ltrniotacnvN 35251
Description: Version of cdleme51finvtrN 35229 with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 18-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrniotaval.l  |-  .<_  =  ( le `  K )
ltrniotaval.a  |-  A  =  ( Atoms `  K )
ltrniotaval.h  |-  H  =  ( LHyp `  K
)
ltrniotaval.t  |-  T  =  ( ( LTrn `  K
) `  W )
ltrniotaval.f  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  Q )
Assertion
Ref Expression
ltrniotacnvN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  `' F  e.  T )
Distinct variable groups:    A, f    f, H    f, K    .<_ , f    P, f    Q, f    T, f   
f, W
Allowed substitution hint:    F( f)

Proof of Theorem ltrniotacnvN
Dummy variables  s 
t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2460 . 2  |-  ( Base `  K )  =  (
Base `  K )
2 ltrniotaval.l . 2  |-  .<_  =  ( le `  K )
3 eqid 2460 . 2  |-  ( join `  K )  =  (
join `  K )
4 eqid 2460 . 2  |-  ( meet `  K )  =  (
meet `  K )
5 ltrniotaval.a . 2  |-  A  =  ( Atoms `  K )
6 ltrniotaval.h . 2  |-  H  =  ( LHyp `  K
)
7 eqid 2460 . 2  |-  ( ( P ( join `  K
) Q ) (
meet `  K ) W )  =  ( ( P ( join `  K ) Q ) ( meet `  K
) W )
8 eqid 2460 . 2  |-  ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) )  =  ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) )
9 eqid 2460 . 2  |-  ( ( P ( join `  K
) Q ) (
meet `  K )
( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) )  =  ( ( P ( join `  K
) Q ) (
meet `  K )
( ( ( t ( join `  K
) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) )
10 eqid 2460 . 2  |-  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )  =  ( x  e.  ( Base `  K
)  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s ( join `  K ) ( x ( meet `  K
) W ) )  =  x )  -> 
z  =  ( if ( s  .<_  ( P ( join `  K
) Q ) ,  ( iota_ y  e.  (
Base `  K ) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P ( join `  K ) Q ) )  ->  y  =  ( ( P (
join `  K ) Q ) ( meet `  K ) ( ( ( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ( join `  K
) ( ( s ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ) ,  [_ s  /  t ]_ (
( t ( join `  K ) ( ( P ( join `  K
) Q ) (
meet `  K ) W ) ) (
meet `  K )
( Q ( join `  K ) ( ( P ( join `  K
) t ) (
meet `  K ) W ) ) ) ) ( join `  K
) ( x (
meet `  K ) W ) ) ) ) ,  x ) )
11 ltrniotaval.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
12 ltrniotaval.f . 2  |-  F  =  ( iota_ f  e.  T  ( f `  P
)  =  Q )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemg1finvtrlemN 35246 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  `' F  e.  T )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   [_csb 3428   ifcif 3932   class class class wbr 4440    |-> cmpt 4498   `'ccnv 4991   ` cfv 5579   iota_crio 6235  (class class class)co 6275   Basecbs 14479   lecple 14551   joincjn 15420   meetcmee 15421   Atomscatm 33935   HLchlt 34022   LHypclh 34655   LTrncltrn 34772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-riotaBAD 33631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-undef 6992  df-map 7412  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-p1 15516  df-lat 15522  df-clat 15584  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023  df-llines 34169  df-lplanes 34170  df-lvols 34171  df-lines 34172  df-psubsp 34174  df-pmap 34175  df-padd 34467  df-lhyp 34659  df-laut 34660  df-ldil 34775  df-ltrn 34776  df-trl 34830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator