Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncom Structured version   Unicode version

Theorem ltrncom 34017
Description: Composition is commutative for translations. Part of proof of Lemma G of [Crawley] p. 116 (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
ltrncom.h  |-  H  =  ( LHyp `  K
)
ltrncom.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncom  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  =  ( G  o.  F ) )

Proof of Theorem ltrncom
StepHypRef Expression
1 simpl1 1008 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  (  _I  |`  ( Base `  K ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl2 1009 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  (  _I  |`  ( Base `  K ) ) )  ->  F  e.  T )
3 simpl3 1010 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  (  _I  |`  ( Base `  K ) ) )  ->  G  e.  T )
4 simpr 462 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  (  _I  |`  ( Base `  K ) ) )  ->  F  =  (  _I  |`  ( Base `  K ) ) )
5 eqid 2429 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
6 ltrncom.h . . . 4  |-  H  =  ( LHyp `  K
)
7 ltrncom.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
85, 6, 7cdlemg47a 34013 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  F  =  (  _I  |`  ( Base `  K ) ) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
91, 2, 3, 4, 8syl121anc 1269 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  (  _I  |`  ( Base `  K ) ) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
10 simpll1 1044 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =  ( ( ( trL `  K
) `  W ) `  G ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
11 simpll2 1045 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =  ( ( ( trL `  K
) `  W ) `  G ) )  ->  F  e.  T )
12 simpll3 1046 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =  ( ( ( trL `  K
) `  W ) `  G ) )  ->  G  e.  T )
13 simplr 760 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =  ( ( ( trL `  K
) `  W ) `  G ) )  ->  F  =/=  (  _I  |`  ( Base `  K ) ) )
14 simpr 462 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =  ( ( ( trL `  K
) `  W ) `  G ) )  -> 
( ( ( trL `  K ) `  W
) `  F )  =  ( ( ( trL `  K ) `
 W ) `  G ) )
15 eqid 2429 . . . . 5  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
165, 6, 7, 15cdlemg48 34016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  (  _I  |`  ( Base `  K ) )  /\  ( ( ( trL `  K ) `
 W ) `  F )  =  ( ( ( trL `  K
) `  W ) `  G ) ) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
1710, 11, 12, 13, 14, 16syl122anc 1273 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =  ( ( ( trL `  K
) `  W ) `  G ) )  -> 
( F  o.  G
)  =  ( G  o.  F ) )
18 simpll1 1044 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =/=  (
( ( trL `  K
) `  W ) `  G ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
19 simpll2 1045 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =/=  (
( ( trL `  K
) `  W ) `  G ) )  ->  F  e.  T )
20 simpll3 1046 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =/=  (
( ( trL `  K
) `  W ) `  G ) )  ->  G  e.  T )
21 simpr 462 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =/=  (
( ( trL `  K
) `  W ) `  G ) )  -> 
( ( ( trL `  K ) `  W
) `  F )  =/=  ( ( ( trL `  K ) `  W
) `  G )
)
226, 7, 15cdlemg44 34012 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( ( trL `  K
) `  W ) `  F )  =/=  (
( ( trL `  K
) `  W ) `  G ) )  -> 
( F  o.  G
)  =  ( G  o.  F ) )
2318, 19, 20, 21, 22syl121anc 1269 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  /\  ( ( ( trL `  K
) `  W ) `  F )  =/=  (
( ( trL `  K
) `  W ) `  G ) )  -> 
( F  o.  G
)  =  ( G  o.  F ) )
2417, 23pm2.61dane 2749 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =/=  (  _I  |`  ( Base `  K ) ) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
259, 24pm2.61dane 2749 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  =  ( G  o.  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625    _I cid 4764    |` cres 4856    o. ccom 4858   ` cfv 5601   Basecbs 15084   HLchlt 32628   LHypclh 33261   LTrncltrn 33378   trLctrl 33436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-riotaBAD 32237
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-undef 7028  df-map 7482  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-oposet 32454  df-ol 32456  df-oml 32457  df-covers 32544  df-ats 32545  df-atl 32576  df-cvlat 32600  df-hlat 32629  df-llines 32775  df-lplanes 32776  df-lvols 32777  df-lines 32778  df-psubsp 32780  df-pmap 32781  df-padd 33073  df-lhyp 33265  df-laut 33266  df-ldil 33381  df-ltrn 33382  df-trl 33437
This theorem is referenced by:  ltrnco4  34018  trljco2  34020  tgrpabl  34030  tendoplcom  34061  tendoicl  34075  cdlemk3  34112  cdlemk12  34129  cdlemk12u  34151  cdlemk46  34227  cdlemk49  34230  dvhvaddcomN  34376  cdlemn4  34478  cdlemn8  34484  dihopelvalcpre  34528
  Copyright terms: Public domain W3C validator