Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoidN Structured version   Unicode version

Theorem ltrncoidN 33126
Description: Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analog of vector subtraction. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrn1o.b  |-  B  =  ( Base `  K
)
ltrn1o.h  |-  H  =  ( LHyp `  K
)
ltrn1o.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncoidN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  <->  F  =  G ) )

Proof of Theorem ltrncoidN
StepHypRef Expression
1 simpl1 1000 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpl3 1002 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  G  e.  T )
3 ltrn1o.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
4 ltrn1o.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
5 ltrn1o.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
63, 4, 5ltrn1o 33122 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G : B
-1-1-onto-> B )
71, 2, 6syl2anc 659 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  G : B -1-1-onto-> B )
8 f1ococnv1 5783 . . . . . . 7  |-  ( G : B -1-1-onto-> B  ->  ( `' G  o.  G )  =  (  _I  |`  B ) )
97, 8syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( `' G  o.  G )  =  (  _I  |`  B )
)
109coeq2d 5107 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( F  o.  ( `' G  o.  G
) )  =  ( F  o.  (  _I  |`  B ) ) )
11 simpl2 1001 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  e.  T )
123, 4, 5ltrn1o 33122 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
131, 11, 12syl2anc 659 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F : B -1-1-onto-> B )
14 f1of 5755 . . . . . 6  |-  ( F : B -1-1-onto-> B  ->  F : B
--> B )
15 fcoi1 5698 . . . . . 6  |-  ( F : B --> B  -> 
( F  o.  (  _I  |`  B ) )  =  F )
1613, 14, 153syl 20 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( F  o.  (  _I  |`  B ) )  =  F )
1710, 16eqtr2d 2444 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  =  ( F  o.  ( `' G  o.  G ) ) )
18 coass 5463 . . . 4  |-  ( ( F  o.  `' G
)  o.  G )  =  ( F  o.  ( `' G  o.  G
) )
1917, 18syl6eqr 2461 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  =  ( ( F  o.  `' G
)  o.  G ) )
20 simpr 459 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( F  o.  `' G )  =  (  _I  |`  B )
)
2120coeq1d 5106 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( ( F  o.  `' G )  o.  G
)  =  ( (  _I  |`  B )  o.  G ) )
22 f1of 5755 . . . . 5  |-  ( G : B -1-1-onto-> B  ->  G : B
--> B )
23 fcoi2 5699 . . . . 5  |-  ( G : B --> B  -> 
( (  _I  |`  B )  o.  G )  =  G )
247, 22, 233syl 20 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( (  _I  |`  B )  o.  G )  =  G )
2521, 24eqtrd 2443 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  -> 
( ( F  o.  `' G )  o.  G
)  =  G )
2619, 25eqtrd 2443 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  =  G )
27 simpr 459 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  F  =  G )
2827coeq1d 5106 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  ( F  o.  `' G
)  =  ( G  o.  `' G ) )
29 simpl1 1000 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  ( K  e.  HL  /\  W  e.  H ) )
30 simpl3 1002 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  G  e.  T )
3129, 30, 6syl2anc 659 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  G : B -1-1-onto-> B )
32 f1ococnv2 5781 . . . 4  |-  ( G : B -1-1-onto-> B  ->  ( G  o.  `' G )  =  (  _I  |`  B )
)
3331, 32syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  ( G  o.  `' G
)  =  (  _I  |`  B ) )
3428, 33eqtrd 2443 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  F  =  G )  ->  ( F  o.  `' G
)  =  (  _I  |`  B ) )
3526, 34impbida 833 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  <->  F  =  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    _I cid 4732   `'ccnv 4941    |` cres 4944    o. ccom 4946   -->wf 5521   -1-1-onto->wf1o 5524   ` cfv 5525   Basecbs 14733   HLchlt 32349   LHypclh 32982   LTrncltrn 33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-map 7379  df-laut 32987  df-ldil 33102  df-ltrn 33103
This theorem is referenced by:  tendospcanN  34024
  Copyright terms: Public domain W3C validator