Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoat Structured version   Unicode version

Theorem ltrncoat 35341
Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 35336, ltrnat 35337 uses. (Contributed by NM, 1-May-2013.)
Hypotheses
Ref Expression
ltrnel.l  |-  .<_  =  ( le `  K )
ltrnel.a  |-  A  =  ( Atoms `  K )
ltrnel.h  |-  H  =  ( LHyp `  K
)
ltrnel.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncoat  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( F `  ( G `  P ) )  e.  A )

Proof of Theorem ltrncoat
StepHypRef Expression
1 simp1 996 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 1022 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  F  e.  T )
3 ltrnel.l . . . 4  |-  .<_  =  ( le `  K )
4 ltrnel.a . . . 4  |-  A  =  ( Atoms `  K )
5 ltrnel.h . . . 4  |-  H  =  ( LHyp `  K
)
6 ltrnel.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
73, 4, 5, 6ltrnat 35337 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
873adant2l 1222 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( G `  P )  e.  A )
93, 4, 5, 6ltrnat 35337 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( G `  P
)  e.  A )  ->  ( F `  ( G `  P ) )  e.  A )
101, 2, 8, 9syl3anc 1228 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( F `  ( G `  P ) )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5594   lecple 14579   Atomscatm 34461   HLchlt 34548   LHypclh 35181   LTrncltrn 35298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-map 7434  df-plt 15462  df-glb 15479  df-p0 15543  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-hlat 34549  df-lhyp 35185  df-laut 35186  df-ldil 35301  df-ltrn 35302
This theorem is referenced by:  cdlemg9a  35829  cdlemg9  35831  cdlemg11aq  35835  cdlemg12a  35840  cdlemg12c  35842  cdlemg12f  35845  cdlemg12g  35846  cdlemg12  35847  cdlemg13a  35848  cdlemg13  35849  cdlemg17f  35863  cdlemg17g  35864  cdlemg17  35874  cdlemg19a  35880  cdlemg19  35881
  Copyright terms: Public domain W3C validator