Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco4 Structured version   Unicode version

Theorem ltrnco4 33758
Description: Rearrange a composition of 4 translations, analogous to an4 825. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
ltrncom.h  |-  H  =  ( LHyp `  K
)
ltrncom.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnco4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  E  e.  T  /\  F  e.  T
)  ->  ( ( D  o.  E )  o.  ( F  o.  G
) )  =  ( ( D  o.  F
)  o.  ( E  o.  G ) ) )

Proof of Theorem ltrnco4
StepHypRef Expression
1 ltrncom.h . . . . . 6  |-  H  =  ( LHyp `  K
)
2 ltrncom.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
31, 2ltrncom 33757 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  E  e.  T  /\  F  e.  T
)  ->  ( E  o.  F )  =  ( F  o.  E ) )
43coeq1d 4985 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  E  e.  T  /\  F  e.  T
)  ->  ( ( E  o.  F )  o.  G )  =  ( ( F  o.  E
)  o.  G ) )
5 coass 5342 . . . 4  |-  ( ( E  o.  F )  o.  G )  =  ( E  o.  ( F  o.  G )
)
6 coass 5342 . . . 4  |-  ( ( F  o.  E )  o.  G )  =  ( F  o.  ( E  o.  G )
)
74, 5, 63eqtr3g 2466 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  E  e.  T  /\  F  e.  T
)  ->  ( E  o.  ( F  o.  G
) )  =  ( F  o.  ( E  o.  G ) ) )
87coeq2d 4986 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  E  e.  T  /\  F  e.  T
)  ->  ( D  o.  ( E  o.  ( F  o.  G )
) )  =  ( D  o.  ( F  o.  ( E  o.  G ) ) ) )
9 coass 5342 . 2  |-  ( ( D  o.  E )  o.  ( F  o.  G ) )  =  ( D  o.  ( E  o.  ( F  o.  G ) ) )
10 coass 5342 . 2  |-  ( ( D  o.  F )  o.  ( E  o.  G ) )  =  ( D  o.  ( F  o.  ( E  o.  G ) ) )
118, 9, 103eqtr4g 2468 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  E  e.  T  /\  F  e.  T
)  ->  ( ( D  o.  E )  o.  ( F  o.  G
) )  =  ( ( D  o.  F
)  o.  ( E  o.  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    o. ccom 4827   ` cfv 5569   HLchlt 32368   LHypclh 33001   LTrncltrn 33118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-riotaBAD 31977
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-undef 7005  df-map 7459  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-llines 32515  df-lplanes 32516  df-lvols 32517  df-lines 32518  df-psubsp 32520  df-pmap 32521  df-padd 32813  df-lhyp 33005  df-laut 33006  df-ldil 33121  df-ltrn 33122  df-trl 33177
This theorem is referenced by:  tendoco2  33787
  Copyright terms: Public domain W3C validator