Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvatb Structured version   Unicode version

Theorem ltrncnvatb 33412
Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
ltrnatb.b  |-  B  =  ( Base `  K
)
ltrnatb.a  |-  A  =  ( Atoms `  K )
ltrnatb.h  |-  H  =  ( LHyp `  K
)
ltrnatb.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncnvatb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( P  e.  A  <->  ( `' F `  P )  e.  A
) )

Proof of Theorem ltrncnvatb
StepHypRef Expression
1 ltrnatb.b . . . . 5  |-  B  =  ( Base `  K
)
2 ltrnatb.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 ltrnatb.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
41, 2, 3ltrn1o 33398 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
5 f1ocnvdm 6198 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  P  e.  B )  ->  ( `' F `  P )  e.  B
)
64, 5stoic3 1656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( `' F `  P )  e.  B )
7 ltrnatb.a . . . 4  |-  A  =  ( Atoms `  K )
81, 7, 2, 3ltrnatb 33411 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( `' F `  P )  e.  B
)  ->  ( ( `' F `  P )  e.  A  <->  ( F `  ( `' F `  P ) )  e.  A ) )
96, 8syld3an3 1309 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( ( `' F `  P )  e.  A  <->  ( F `  ( `' F `  P ) )  e.  A ) )
10 f1ocnvfv2 6191 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  P  e.  B )  ->  ( F `  ( `' F `  P ) )  =  P )
114, 10stoic3 1656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( F `  ( `' F `  P ) )  =  P )
1211eleq1d 2498 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( ( F `  ( `' F `  P )
)  e.  A  <->  P  e.  A ) )
139, 12bitr2d 257 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( P  e.  A  <->  ( `' F `  P )  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   `'ccnv 4853   -1-1-onto->wf1o 5600   ` cfv 5601   Basecbs 15084   Atomscatm 32538   HLchlt 32625   LHypclh 33258   LTrncltrn 33375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-map 7482  df-plt 16155  df-glb 16172  df-p0 16236  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-hlat 32626  df-lhyp 33262  df-laut 33263  df-ldil 33378  df-ltrn 33379
This theorem is referenced by:  ltrncnvat  33415
  Copyright terms: Public domain W3C validator