Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvatb Structured version   Unicode version

Theorem ltrncnvatb 34101
Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
ltrnatb.b  |-  B  =  ( Base `  K
)
ltrnatb.a  |-  A  =  ( Atoms `  K )
ltrnatb.h  |-  H  =  ( LHyp `  K
)
ltrnatb.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncnvatb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( P  e.  A  <->  ( `' F `  P )  e.  A
) )

Proof of Theorem ltrncnvatb
StepHypRef Expression
1 ltrnatb.b . . . . . 6  |-  B  =  ( Base `  K
)
2 ltrnatb.h . . . . . 6  |-  H  =  ( LHyp `  K
)
3 ltrnatb.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
41, 2, 3ltrn1o 34087 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
543adant3 1008 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  F : B
-1-1-onto-> B )
6 simp3 990 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  P  e.  B )
7 f1ocnvdm 6093 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  P  e.  B )  ->  ( `' F `  P )  e.  B
)
85, 6, 7syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( `' F `  P )  e.  B )
9 ltrnatb.a . . . 4  |-  A  =  ( Atoms `  K )
101, 9, 2, 3ltrnatb 34100 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( `' F `  P )  e.  B
)  ->  ( ( `' F `  P )  e.  A  <->  ( F `  ( `' F `  P ) )  e.  A ) )
118, 10syld3an3 1264 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( ( `' F `  P )  e.  A  <->  ( F `  ( `' F `  P ) )  e.  A ) )
12 f1ocnvfv2 6088 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  P  e.  B )  ->  ( F `  ( `' F `  P ) )  =  P )
135, 6, 12syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( F `  ( `' F `  P ) )  =  P )
1413eleq1d 2521 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( ( F `  ( `' F `  P )
)  e.  A  <->  P  e.  A ) )
1511, 14bitr2d 254 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  B
)  ->  ( P  e.  A  <->  ( `' F `  P )  e.  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   `'ccnv 4942   -1-1-onto->wf1o 5520   ` cfv 5521   Basecbs 14287   Atomscatm 33227   HLchlt 33314   LHypclh 33947   LTrncltrn 34064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-map 7321  df-plt 15242  df-glb 15259  df-p0 15323  df-oposet 33140  df-ol 33142  df-oml 33143  df-covers 33230  df-ats 33231  df-hlat 33315  df-lhyp 33951  df-laut 33952  df-ldil 34067  df-ltrn 34068
This theorem is referenced by:  ltrncnvat  34104
  Copyright terms: Public domain W3C validator