Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncl Structured version   Unicode version

Theorem ltrncl 34921
Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b  |-  B  =  ( Base `  K
)
ltrn1o.h  |-  H  =  ( LHyp `  K
)
ltrn1o.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncl  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  ( F `  X )  e.  B
)

Proof of Theorem ltrncl
StepHypRef Expression
1 simp1l 1020 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  K  e.  V )
2 ltrn1o.h . . . 4  |-  H  =  ( LHyp `  K
)
3 eqid 2467 . . . 4  |-  ( LAut `  K )  =  (
LAut `  K )
4 ltrn1o.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4ltrnlaut 34919 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  F  e.  ( LAut `  K
) )
653adant3 1016 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  F  e.  ( LAut `  K )
)
7 simp3 998 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  X  e.  B )
8 ltrn1o.b . . 3  |-  B  =  ( Base `  K
)
98, 3lautcl 34883 . 2  |-  ( ( ( K  e.  V  /\  F  e.  ( LAut `  K ) )  /\  X  e.  B
)  ->  ( F `  X )  e.  B
)
101, 6, 7, 9syl21anc 1227 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  ( F `  X )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5586   Basecbs 14486   LHypclh 34780   LAutclaut 34781   LTrncltrn 34897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-laut 34785  df-ldil 34900  df-ltrn 34901
This theorem is referenced by:  ltrnatb  34933  ltrneq2  34944  trlval2  34959  trlcl  34960  trljat1  34962  trljat2  34963  trlle  34980  cdlemc4  34990  cdlemc5  34991  cdlemd7  35000  cdlemg4c  35408  cdlemg7N  35422  cdlemg8b  35424  cdlemg11b  35438  trlcolem  35522  cdlemg44a  35527  cdlemi1  35614  cdlemi  35616  cdlemkvcl  35638  cdlemkid1  35718  cdlemm10N  35915  dih1dimatlem  36126
  Copyright terms: Public domain W3C validator