Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncl Structured version   Unicode version

Theorem ltrncl 34078
Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b  |-  B  =  ( Base `  K
)
ltrn1o.h  |-  H  =  ( LHyp `  K
)
ltrn1o.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrncl  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  ( F `  X )  e.  B
)

Proof of Theorem ltrncl
StepHypRef Expression
1 simp1l 1012 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  K  e.  V )
2 ltrn1o.h . . . 4  |-  H  =  ( LHyp `  K
)
3 eqid 2451 . . . 4  |-  ( LAut `  K )  =  (
LAut `  K )
4 ltrn1o.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4ltrnlaut 34076 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  F  e.  ( LAut `  K
) )
653adant3 1008 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  F  e.  ( LAut `  K )
)
7 simp3 990 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  X  e.  B )
8 ltrn1o.b . . 3  |-  B  =  ( Base `  K
)
98, 3lautcl 34040 . 2  |-  ( ( ( K  e.  V  /\  F  e.  ( LAut `  K ) )  /\  X  e.  B
)  ->  ( F `  X )  e.  B
)
101, 6, 7, 9syl21anc 1218 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T  /\  X  e.  B
)  ->  ( F `  X )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5519   Basecbs 14285   LHypclh 33937   LAutclaut 33938   LTrncltrn 34054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-map 7319  df-laut 33942  df-ldil 34057  df-ltrn 34058
This theorem is referenced by:  ltrnatb  34090  ltrneq2  34101  trlval2  34116  trlcl  34117  trljat1  34119  trljat2  34120  trlle  34137  cdlemc4  34147  cdlemc5  34148  cdlemd7  34157  cdlemg4c  34565  cdlemg7N  34579  cdlemg8b  34581  cdlemg11b  34595  trlcolem  34679  cdlemg44a  34684  cdlemi1  34771  cdlemi  34773  cdlemkvcl  34795  cdlemkid1  34875  cdlemm10N  35072  dih1dimatlem  35283
  Copyright terms: Public domain W3C validator