Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrn1o Structured version   Unicode version

Theorem ltrn1o 34076
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b  |-  B  =  ( Base `  K
)
ltrn1o.h  |-  H  =  ( LHyp `  K
)
ltrn1o.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrn1o  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  F : B -1-1-onto-> B )

Proof of Theorem ltrn1o
StepHypRef Expression
1 simpll 753 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  K  e.  V )
2 ltrn1o.h . . 3  |-  H  =  ( LHyp `  K
)
3 eqid 2451 . . 3  |-  ( LAut `  K )  =  (
LAut `  K )
4 ltrn1o.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
52, 3, 4ltrnlaut 34075 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  F  e.  ( LAut `  K
) )
6 ltrn1o.b . . 3  |-  B  =  ( Base `  K
)
76, 3laut1o 34037 . 2  |-  ( ( K  e.  V  /\  F  e.  ( LAut `  K ) )  ->  F : B -1-1-onto-> B )
81, 5, 7syl2anc 661 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  F : B -1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   -1-1-onto->wf1o 5517   ` cfv 5518   Basecbs 14278   LHypclh 33936   LAutclaut 33937   LTrncltrn 34053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-map 7318  df-laut 33941  df-ldil 34056  df-ltrn 34057
This theorem is referenced by:  ltrncnvnid  34079  ltrncoidN  34080  ltrnid  34087  ltrncnvatb  34090  ltrncnvel  34094  ltrncoval  34097  ltrncnv  34098  ltrneq2  34100  trlcnv  34117  ltrniotacnvval  34534  cdlemg17h  34620  trlcoabs2N  34674  trlcoat  34675  trlcone  34680  cdlemg47a  34686  cdlemg46  34687  cdlemg47  34688  trljco  34692  tgrpgrplem  34701  tendo0pl  34743  tendoipl  34749  cdlemi2  34771  cdlemk2  34784  cdlemk4  34786  cdlemk8  34790  cdlemkid2  34876  cdlemk45  34899  cdlemk53b  34908  cdlemk53  34909  cdlemk55a  34911  tendocnv  34974  dvhgrp  35060  dvhopN  35069  cdlemn3  35150  cdlemn8  35157  cdlemn9  35158  dihordlem7b  35168  dihopelvalcpre  35201  dihmeetlem1N  35243  dihglblem5apreN  35244
  Copyright terms: Public domain W3C validator