MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltresr Structured version   Unicode version

Theorem ltresr 9408
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltresr  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )

Proof of Theorem ltresr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 9402 . . . 4  |-  <RR  C_  ( RR  X.  RR )
21brel 4985 . . 3  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( <. A ,  0R >.  e.  RR  /\ 
<. B ,  0R >.  e.  RR ) )
3 opelreal 9398 . . . 4  |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
4 opelreal 9398 . . . 4  |-  ( <. B ,  0R >.  e.  RR  <->  B  e.  R. )
53, 4anbi12i 697 . . 3  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  <-> 
( A  e.  R.  /\  B  e.  R. )
)
62, 5sylib 196 . 2  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( A  e.  R.  /\  B  e. 
R. ) )
7 ltrelsr 9339 . . 3  |-  <R  C_  ( R.  X.  R. )
87brel 4985 . 2  |-  ( A 
<R  B  ->  ( A  e.  R.  /\  B  e.  R. ) )
9 opex 4654 . . . . . . 7  |-  <. A ,  0R >.  e.  _V
10 opex 4654 . . . . . . 7  |-  <. B ,  0R >.  e.  _V
11 eleq1 2523 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( x  e.  RR  <->  <. A ,  0R >.  e.  RR ) )
1211anbi1d 704 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  e.  RR  /\  y  e.  RR )  <->  ( <. A ,  0R >.  e.  RR  /\  y  e.  RR ) ) )
13 eqeq1 2455 . . . . . . . . . . 11  |-  ( x  =  <. A ,  0R >.  ->  ( x  = 
<. z ,  0R >.  <->  <. A ,  0R >.  =  <. z ,  0R >. )
)
1413anbi1d 704 . . . . . . . . . 10  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. ) ) )
1514anbi1d 704 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
16152exbidv 1683 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
1712, 16anbi12d 710 . . . . . . 7  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
18 eleq1 2523 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( y  e.  RR  <->  <. B ,  0R >.  e.  RR ) )
1918anbi2d 703 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  <-> 
( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR ) ) )
20 eqeq1 2455 . . . . . . . . . . 11  |-  ( y  =  <. B ,  0R >.  ->  ( y  = 
<. w ,  0R >.  <->  <. B ,  0R >.  =  <. w ,  0R >. )
)
2120anbi2d 703 . . . . . . . . . 10  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. ) ) )
2221anbi1d 704 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  /\  z  <R  w
) ) )
23222exbidv 1683 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
2419, 23anbi12d 710 . . . . . . 7  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
25 df-lt 9396 . . . . . . 7  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
269, 10, 17, 24, 25brab 4709 . . . . . 6  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  ( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
2726baib 896 . . . . 5  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
28 vex 3071 . . . . . . . . . . 11  |-  z  e. 
_V
2928eqresr 9405 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  = 
<. A ,  0R >.  <->  z  =  A )
30 eqcom 2460 . . . . . . . . . 10  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  <. z ,  0R >.  =  <. A ,  0R >. )
31 eqcom 2460 . . . . . . . . . 10  |-  ( A  =  z  <->  z  =  A )
3229, 30, 313bitr4i 277 . . . . . . . . 9  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  A  =  z )
33 vex 3071 . . . . . . . . . . 11  |-  w  e. 
_V
3433eqresr 9405 . . . . . . . . . 10  |-  ( <.
w ,  0R >.  = 
<. B ,  0R >.  <->  w  =  B )
35 eqcom 2460 . . . . . . . . . 10  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  <. w ,  0R >.  =  <. B ,  0R >. )
36 eqcom 2460 . . . . . . . . . 10  |-  ( B  =  w  <->  w  =  B )
3734, 35, 363bitr4i 277 . . . . . . . . 9  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  B  =  w )
3832, 37anbi12i 697 . . . . . . . 8  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <-> 
( A  =  z  /\  B  =  w ) )
3928, 33opth2 4668 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. z ,  w >.  <->  ( A  =  z  /\  B  =  w )
)
4038, 39bitr4i 252 . . . . . . 7  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <->  <. A ,  B >.  = 
<. z ,  w >. )
4140anbi1i 695 . . . . . 6  |-  ( ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
42412exbii 1636 . . . . 5  |-  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
4327, 42syl6bb 261 . . . 4  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
443, 4, 43syl2anbr 480 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
45 breq12 4395 . . . 4  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z  <R  w  <->  A 
<R  B ) )
4645copsex2g 4677 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w )  <->  A  <R  B ) )
4744, 46bitrd 253 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <-> 
A  <R  B ) )
486, 8, 47pm5.21nii 353 1  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   <.cop 3981   class class class wbr 4390   R.cnr 9135   0Rc0r 9136    <R cltr 9141   RRcr 9382    <RR cltrr 9387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-omul 7025  df-er 7201  df-ec 7203  df-qs 7207  df-ni 9142  df-pli 9143  df-mi 9144  df-lti 9145  df-plpq 9178  df-mpq 9179  df-ltpq 9180  df-enq 9181  df-nq 9182  df-erq 9183  df-plq 9184  df-mq 9185  df-1nq 9186  df-rq 9187  df-ltnq 9188  df-np 9251  df-1p 9252  df-enr 9327  df-nr 9328  df-ltr 9331  df-0r 9332  df-r 9393  df-lt 9396
This theorem is referenced by:  ltresr2  9409  axpre-lttri  9433  axpre-lttrn  9434  axpre-ltadd  9435  axpre-mulgt0  9436  axpre-sup  9437
  Copyright terms: Public domain W3C validator