Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelpi Structured version   Unicode version

Theorem ltrelpi 9296
 Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelpi

Proof of Theorem ltrelpi
StepHypRef Expression
1 df-lti 9282 . 2
2 inss2 3659 . 2
31, 2eqsstri 3471 1
 Colors of variables: wff setvar class Syntax hints:   cin 3412   wss 3413   cep 4731   cxp 4820  cnpi 9251   clti 9254 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-v 3060  df-in 3420  df-ss 3427  df-lti 9282 This theorem is referenced by:  ltapi  9310  ltmpi  9311  nlt1pi  9313  indpi  9314  ordpipq  9349  ltsonq  9376  archnq  9387
 Copyright terms: Public domain W3C validator