MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrec1 Structured version   Unicode version

Theorem ltrec1 10423
Description: Reciprocal swap in a 'less than' relation. (Contributed by NM, 24-Feb-2005.)
Assertion
Ref Expression
ltrec1  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  /  A )  <  B  <->  ( 1  /  B )  <  A ) )

Proof of Theorem ltrec1
StepHypRef Expression
1 gt0ne0 10008 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
2 rereccl 10253 . . . . 5  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  RR )
31, 2syldan 470 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
4 recgt0 10377 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
53, 4jca 532 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) ) )
6 ltrec 10417 . . 3  |-  ( ( ( ( 1  /  A )  e.  RR  /\  0  <  ( 1  /  A ) )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  /  A )  <  B  <->  ( 1  /  B )  <  ( 1  / 
( 1  /  A
) ) ) )
75, 6sylan 471 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  /  A )  <  B  <->  ( 1  /  B )  <  ( 1  / 
( 1  /  A
) ) ) )
8 recn 9573 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
9 recrec 10232 . . . . . 6  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  (
1  /  A ) )  =  A )
108, 9sylan 471 . . . . 5  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 1  /  (
1  /  A ) )  =  A )
111, 10syldan 470 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  (
1  /  A ) )  =  A )
1211adantr 465 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( 1  /  (
1  /  A ) )  =  A )
1312breq2d 4454 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  /  B )  <  (
1  /  ( 1  /  A ) )  <-> 
( 1  /  B
)  <  A )
)
147, 13bitrd 253 1  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  /  A )  <  B  <->  ( 1  /  B )  <  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2657   class class class wbr 4442  (class class class)co 6277   CCcc 9481   RRcr 9482   0cc0 9483   1c1 9484    < clt 9619    / cdiv 10197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198
This theorem is referenced by:  recreclt  10435  rpnnen1lem5  11203  ltrec1d  11267  expnlbnd  12253  lmnn  21432  rlimcnp  23018  emcllem2  23049
  Copyright terms: Public domain W3C validator