MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrec Structured version   Unicode version

Theorem ltrec 10466
Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltrec  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  <  B  <->  ( 1  /  B )  <  ( 1  /  A ) ) )

Proof of Theorem ltrec
StepHypRef Expression
1 1red 9641 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
1  e.  RR )
2 simprl 756 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  B  e.  RR )
3 simpll 752 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  A  e.  RR )
4 simplr 754 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  A )
5 ltmuldiv 10456 . . . 4  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
61, 2, 3, 4, 5syl112anc 1234 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  x.  A )  <  B  <->  1  <  ( B  /  A ) ) )
73recnd 9652 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  A  e.  CC )
87mulid2d 9644 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( 1  x.  A
)  =  A )
98breq1d 4405 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  x.  A )  <  B  <->  A  <  B ) )
102recnd 9652 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  B  e.  CC )
114gt0ne0d 10157 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  ->  A  =/=  0 )
1210, 7, 11divrecd 10364 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( B  /  A
)  =  ( B  x.  ( 1  /  A ) ) )
1312breq2d 4407 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( 1  <  ( B  /  A )  <->  1  <  ( B  x.  ( 1  /  A ) ) ) )
146, 9, 133bitr3d 283 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  <  B  <->  1  <  ( B  x.  ( 1  /  A
) ) ) )
153, 11rereccld 10412 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( 1  /  A
)  e.  RR )
16 simprr 758 . . 3  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  B )
17 ltdivmul 10458 . . 3  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( (
1  /  B )  <  ( 1  /  A )  <->  1  <  ( B  x.  ( 1  /  A ) ) ) )
181, 15, 2, 16, 17syl112anc 1234 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( 1  /  B )  <  (
1  /  A )  <->  1  <  ( B  x.  ( 1  /  A ) ) ) )
1914, 18bitr4d 256 1  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  <  B  <->  ( 1  /  B )  <  ( 1  /  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1842   class class class wbr 4395  (class class class)co 6278   RRcr 9521   0cc0 9522   1c1 9523    x. cmul 9527    < clt 9658    / cdiv 10247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248
This theorem is referenced by:  lerec  10467  ltdiv2  10470  ltrec1  10472  reclt1  10480  recgt1  10481  ltreci  10496  nnrecl  10834  ltrecd  11322  chebbnd1  24038
  Copyright terms: Public domain W3C validator