MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltprord Structured version   Unicode version

Theorem ltprord 9313
Description: Positive real 'less than' in terms of proper subset. (Contributed by NM, 20-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltprord  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  A  C.  B
) )

Proof of Theorem ltprord
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2526 . . . . 5  |-  ( x  =  A  ->  (
x  e.  P.  <->  A  e.  P. ) )
21anbi1d 704 . . . 4  |-  ( x  =  A  ->  (
( x  e.  P.  /\  y  e.  P. )  <->  ( A  e.  P.  /\  y  e.  P. )
) )
3 psseq1 3554 . . . 4  |-  ( x  =  A  ->  (
x  C.  y  <->  A  C.  y
) )
42, 3anbi12d 710 . . 3  |-  ( x  =  A  ->  (
( ( x  e. 
P.  /\  y  e.  P. )  /\  x  C.  y )  <->  ( ( A  e.  P.  /\  y  e.  P. )  /\  A  C.  y ) ) )
5 eleq1 2526 . . . . 5  |-  ( y  =  B  ->  (
y  e.  P.  <->  B  e.  P. ) )
65anbi2d 703 . . . 4  |-  ( y  =  B  ->  (
( A  e.  P.  /\  y  e.  P. )  <->  ( A  e.  P.  /\  B  e.  P. )
) )
7 psseq2 3555 . . . 4  |-  ( y  =  B  ->  ( A  C.  y  <->  A  C.  B
) )
86, 7anbi12d 710 . . 3  |-  ( y  =  B  ->  (
( ( A  e. 
P.  /\  y  e.  P. )  /\  A  C.  y )  <->  ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B ) ) )
9 df-ltp 9268 . . 3  |-  <P  =  { <. x ,  y
>.  |  ( (
x  e.  P.  /\  y  e.  P. )  /\  x  C.  y ) }
104, 8, 9brabg 4719 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B ) ) )
1110bianabs 875 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  A  C.  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    C. wpss 3440   class class class wbr 4403   P.cnp 9140    <P cltp 9144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-rab 2808  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-br 4404  df-opab 4462  df-ltp 9268
This theorem is referenced by:  ltsopr  9315  ltaddpr  9317  ltexprlem7  9325  ltexpri  9326  suplem1pr  9335  suplem2pr  9336
  Copyright terms: Public domain W3C validator