![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltpnfd | Structured version Visualization version Unicode version |
Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltpnfd.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ltpnfd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltpnfd.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ltpnf 11450 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-8 1899 ax-9 1906 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 ax-sep 4538 ax-nul 4547 ax-pow 4594 ax-pr 4652 ax-un 6609 ax-cnex 9620 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3an 993 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-eu 2313 df-mo 2314 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ne 2634 df-ral 2753 df-rex 2754 df-rab 2757 df-v 3058 df-dif 3418 df-un 3420 df-in 3422 df-ss 3429 df-nul 3743 df-if 3893 df-pw 3964 df-sn 3980 df-pr 3982 df-op 3986 df-uni 4212 df-br 4416 df-opab 4475 df-xp 4858 df-pnf 9702 df-xr 9704 df-ltxr 9705 |
This theorem is referenced by: limsupgre 13590 fprodge1 14097 mbflimsup 22671 supxrge 37598 iocopn 37658 ge0lere 37671 fsumge0cl 37689 limcicciooub 37754 limcresiooub 37760 limcleqr 37762 icccncfext 37802 fourierdlem31 38037 fourierdlem31OLD 38038 fourierdlem33 38040 fourierdlem46 38053 fourierdlem48 38055 fourierdlem49 38056 fourierdlem75 38082 fourierdlem85 38092 fourierdlem88 38095 fourierdlem95 38102 fourierdlem103 38110 fourierdlem104 38111 fourierdlem107 38114 fourierdlem109 38116 fourierdlem112 38119 fouriersw 38132 sge0tsms 38259 sge0isum 38306 sge0ad2en 38310 sge0xaddlem2 38313 omessre 38368 omeiunltfirp 38377 hoiprodcl 38406 ovnsubaddlem1 38429 hoiprodcl3 38439 hoidmvcl 38441 sge0hsphoire 38448 hoidmv1lelem1 38450 hoidmv1lelem2 38451 hoidmv1lelem3 38452 hoidmv1le 38453 hoidmvlelem1 38454 hoidmvlelem3 38456 hoidmvlelem4 38457 |
Copyright terms: Public domain | W3C validator |