MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnsymd Structured version   Unicode version

Theorem ltnsymd 9684
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
ltled.1  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ltnsymd  |-  ( ph  ->  -.  B  <  A
)

Proof of Theorem ltnsymd
StepHypRef Expression
1 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
2 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
3 ltled.1 . . 3  |-  ( ph  ->  A  <  B )
41, 2, 3ltled 9683 . 2  |-  ( ph  ->  A  <_  B )
51, 2lenltd 9681 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
64, 5mpbid 210 1  |-  ( ph  ->  -.  B  <  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1840   class class class wbr 4392   RRcr 9439    < clt 9576    <_ cle 9577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-resscn 9497  ax-pre-lttri 9514
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-er 7266  df-en 7473  df-dom 7474  df-sdom 7475  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582
This theorem is referenced by:  fvmptnn04ifd  19536  chfacfscmulgsum  19543  chfacfpmmulgsum  19547  bposlem9  23838  ostth2lem1  24074  signsvtp  28927  rpnnen3lem  35299  limcrecl  36970  icccncfext  37025  fourierdlem10  37234  fourierdlem40  37264  fourierdlem74  37298  fourierdlem75  37299  fourierdlem78  37302  fourierdlem103  37327  sqwvfoura  37346  sqwvfourb  37347  fourierswlem  37348
  Copyright terms: Public domain W3C validator