MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnri Structured version   Unicode version

Theorem ltnri 9710
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
lt.1  |-  A  e.  RR
Assertion
Ref Expression
ltnri  |-  -.  A  <  A

Proof of Theorem ltnri
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 ltnr 9696 . 2  |-  ( A  e.  RR  ->  -.  A  <  A )
31, 2ax-mp 5 1  |-  -.  A  <  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    e. wcel 1819   class class class wbr 4456   RRcr 9508    < clt 9645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-resscn 9566  ax-pre-lttri 9583  ax-pre-lttrn 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-ltxr 9650
This theorem is referenced by:  lt0ne0d  10139  prodgt0  10408  elnnnn0b  10861  0nrp  11275  geolim  13690  geolim2  13691  georeclim  13692  geoisum1c  13700  0ringnnzr  18043  dscopn  21219  logcnlem3  23150  jensen  23443  ostth  23949  gxnval  25388  signswch  28693  signlem0  28719  pell1qrgaplem  30971  ex-gt  33224
  Copyright terms: Public domain W3C validator