MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnri Structured version   Unicode version

Theorem ltnri 9595
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
lt.1  |-  A  e.  RR
Assertion
Ref Expression
ltnri  |-  -.  A  <  A

Proof of Theorem ltnri
StepHypRef Expression
1 lt.1 . 2  |-  A  e.  RR
2 ltnr 9581 . 2  |-  ( A  e.  RR  ->  -.  A  <  A )
31, 2ax-mp 5 1  |-  -.  A  <  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    e. wcel 1758   class class class wbr 4401   RRcr 9393    < clt 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-resscn 9451  ax-pre-lttri 9468  ax-pre-lttrn 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-po 4750  df-so 4751  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-ltxr 9535
This theorem is referenced by:  lt0ne0d  10017  prodgt0  10286  elnnnn0b  10736  0nrp  11133  geolim  13449  geolim2  13450  georeclim  13451  geoisum1c  13459  dscopn  20299  logcnlem3  22223  jensen  22516  ostth  23022  gxnval  23900  signswch  27107  signlem0  27133  pell1qrgaplem  29363  0rngnnzr  30927  ex-gt  31392
  Copyright terms: Public domain W3C validator