MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul2dd Structured version   Unicode version

Theorem ltmul2dd 11066
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltmul1d.1  |-  ( ph  ->  A  e.  RR )
ltmul1d.2  |-  ( ph  ->  B  e.  RR )
ltmul1d.3  |-  ( ph  ->  C  e.  RR+ )
ltdiv1dd.4  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ltmul2dd  |-  ( ph  ->  ( C  x.  A
)  <  ( C  x.  B ) )

Proof of Theorem ltmul2dd
StepHypRef Expression
1 ltdiv1dd.4 . 2  |-  ( ph  ->  A  <  B )
2 ltmul1d.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltmul1d.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 ltmul1d.3 . . 3  |-  ( ph  ->  C  e.  RR+ )
52, 3, 4ltmul2d 11052 . 2  |-  ( ph  ->  ( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
61, 5mpbid 210 1  |-  ( ph  ->  ( C  x.  A
)  <  ( C  x.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1755   class class class wbr 4280  (class class class)co 6080   RRcr 9268    x. cmul 9274    < clt 9405   RR+crp 10978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-po 4628  df-so 4629  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9407  df-mnf 9408  df-ltxr 9410  df-sub 9584  df-neg 9585  df-rp 10979
This theorem is referenced by:  reccn2  13057  mertenslem1  13326  nrginvrcnlem  20112  nmoleub2lem3  20511  bclbnd  22503  pntlemb  22730  mul2lt0bi  25866  dvtanlem  28282  itg2addnclem2  28285  cntotbnd  28536  stirlinglem5  29716
  Copyright terms: Public domain W3C validator