MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmpi Structured version   Unicode version

Theorem ltmpi 9185
Description: Ordering property of multiplication for positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltmpi  |-  ( C  e.  N.  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )

Proof of Theorem ltmpi
StepHypRef Expression
1 dmmulpi 9172 . 2  |-  dom  .N  =  ( N.  X.  N. )
2 ltrelpi 9170 . 2  |-  <N  C_  ( N.  X.  N. )
3 0npi 9163 . 2  |-  -.  (/)  e.  N.
4 pinn 9159 . . . . . 6  |-  ( A  e.  N.  ->  A  e.  om )
5 pinn 9159 . . . . . 6  |-  ( B  e.  N.  ->  B  e.  om )
6 elni2 9158 . . . . . . 7  |-  ( C  e.  N.  <->  ( C  e.  om  /\  (/)  e.  C
) )
7 iba 503 . . . . . . . . . 10  |-  ( (/)  e.  C  ->  ( A  e.  B  <->  ( A  e.  B  /\  (/)  e.  C
) ) )
8 nnmord 7182 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
97, 8sylan9bbr 700 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
1093exp1 1204 . . . . . . . 8  |-  ( A  e.  om  ->  ( B  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) ) )
1110imp4b 590 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( C  e. 
om  /\  (/)  e.  C
)  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
126, 11syl5bi 217 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( C  e.  N.  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
134, 5, 12syl2an 477 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( C  e.  N.  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
1413imp 429 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
15 ltpiord 9168 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  <N  B  <->  A  e.  B ) )
1615adantr 465 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
A  e.  B ) )
17 mulclpi 9174 . . . . . . . 8  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  .N  A
)  e.  N. )
18 mulclpi 9174 . . . . . . . 8  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  .N  B
)  e.  N. )
19 ltpiord 9168 . . . . . . . 8  |-  ( ( ( C  .N  A
)  e.  N.  /\  ( C  .N  B
)  e.  N. )  ->  ( ( C  .N  A )  <N  ( C  .N  B )  <->  ( C  .N  A )  e.  ( C  .N  B ) ) )
2017, 18, 19syl2an 477 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .N  A )  e.  ( C  .N  B ) ) )
21 mulpiord 9166 . . . . . . . . 9  |-  ( ( C  e.  N.  /\  A  e.  N. )  ->  ( C  .N  A
)  =  ( C  .o  A ) )
2221adantr 465 . . . . . . . 8  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  .N  A )  =  ( C  .o  A ) )
23 mulpiord 9166 . . . . . . . . 9  |-  ( ( C  e.  N.  /\  B  e.  N. )  ->  ( C  .N  B
)  =  ( C  .o  B ) )
2423adantl 466 . . . . . . . 8  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( C  .N  B )  =  ( C  .o  B ) )
2522, 24eleq12d 2536 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  e.  ( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2620, 25bitrd 253 . . . . . 6  |-  ( ( ( C  e.  N.  /\  A  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2726anandis 826 . . . . 5  |-  ( ( C  e.  N.  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2827ancoms 453 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( C  .N  A )  <N 
( C  .N  B
)  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2914, 16, 283bitr4d 285 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  <N  B  <-> 
( C  .N  A
)  <N  ( C  .N  B ) ) )
30293impa 1183 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )
311, 2, 3, 30ndmovord 6364 1  |-  ( C  e.  N.  ->  ( A  <N  B  <->  ( C  .N  A )  <N  ( C  .N  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   (/)c0 3746   class class class wbr 4401  (class class class)co 6201   omcom 6587    .o comu 7029   N.cnpi 9123    .N cmi 9125    <N clti 9126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-oadd 7035  df-omul 7036  df-ni 9153  df-mi 9155  df-lti 9156
This theorem is referenced by:  ltsonq  9250  lterpq  9251  ltanq  9252  ltmnq  9253  archnq  9261
  Copyright terms: Public domain W3C validator