MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmnq Unicode version

Theorem ltmnq 8805
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltmnq  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )

Proof of Theorem ltmnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulnqf 8782 . . 3  |-  .Q  :
( Q.  X.  Q. )
--> Q.
21fdmi 5555 . 2  |-  dom  .Q  =  ( Q.  X.  Q. )
3 ltrelnq 8759 . 2  |-  <Q  C_  ( Q.  X.  Q. )
4 0nnq 8757 . 2  |-  -.  (/)  e.  Q.
5 elpqn 8758 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
653ad2ant3 980 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
7 xp1st 6335 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
86, 7syl 16 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
9 xp2nd 6336 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
106, 9syl 16 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
11 mulclpi 8726 . . . . . . . 8  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
128, 10, 11syl2anc 643 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
13 ltmpi 8737 . . . . . . 7  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  e. 
N.  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
1412, 13syl 16 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
15 fvex 5701 . . . . . . . 8  |-  ( 1st `  C )  e.  _V
16 fvex 5701 . . . . . . . 8  |-  ( 2nd `  C )  e.  _V
17 fvex 5701 . . . . . . . 8  |-  ( 1st `  A )  e.  _V
18 mulcompi 8729 . . . . . . . 8  |-  ( x  .N  y )  =  ( y  .N  x
)
19 mulasspi 8730 . . . . . . . 8  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
20 fvex 5701 . . . . . . . 8  |-  ( 2nd `  B )  e.  _V
2115, 16, 17, 18, 19, 20caov4 6237 . . . . . . 7  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 1st `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) )
22 fvex 5701 . . . . . . . 8  |-  ( 1st `  B )  e.  _V
23 fvex 5701 . . . . . . . 8  |-  ( 2nd `  A )  e.  _V
2415, 16, 22, 18, 19, 23caov4 6237 . . . . . . 7  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  C )  .N  ( 1st `  B
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  A ) ) )
2521, 24breq12i 4181 . . . . . 6  |-  ( ( ( ( 1st `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) )  <->  ( ( ( 1st `  C )  .N  ( 1st `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
2614, 25syl6bb 253 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 1st `  C
)  .N  ( 1st `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) ) )
27 ordpipq 8775 . . . . 5  |-  ( <.
( ( 1st `  C
)  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.  <pQ 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.  <->  ( ( ( 1st `  C
)  .N  ( 1st `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 1st `  C )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
2826, 27syl6bbr 255 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  <. ( ( 1st `  C )  .N  ( 1st `  A
) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.  <pQ 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.
) )
29 elpqn 8758 . . . . . . 7  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
30293ad2ant1 978 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
31 mulpipq2 8772 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  ( C  .pQ  A )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.
)
326, 30, 31syl2anc 643 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .pQ  A )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  A ) ) >.
)
33 elpqn 8758 . . . . . . 7  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
34333ad2ant2 979 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
35 mulpipq2 8772 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( C  .pQ  B )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.
)
366, 34, 35syl2anc 643 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .pQ  B )  = 
<. ( ( 1st `  C
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) >.
)
3732, 36breq12d 4185 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  .pQ  A
)  <pQ  ( C  .pQ  B )  <->  <. ( ( 1st `  C )  .N  ( 1st `  A ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A ) )
>.  <pQ  <. ( ( 1st `  C )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. ) )
3828, 37bitr4d 248 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( C  .pQ  A )  <pQ  ( C 
.pQ  B ) ) )
39 ordpinq 8776 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
40393adant3 977 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
41 mulpqnq 8774 . . . . . . 7  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  .Q  A
)  =  ( /Q
`  ( C  .pQ  A ) ) )
4241ancoms 440 . . . . . 6  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  A
)  =  ( /Q
`  ( C  .pQ  A ) ) )
43423adant2 976 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  A )  =  ( /Q `  ( C  .pQ  A ) ) )
44 mulpqnq 8774 . . . . . . 7  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  .Q  B
)  =  ( /Q
`  ( C  .pQ  B ) ) )
4544ancoms 440 . . . . . 6  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  B
)  =  ( /Q
`  ( C  .pQ  B ) ) )
46453adant1 975 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  .Q  B )  =  ( /Q `  ( C  .pQ  B ) ) )
4743, 46breq12d 4185 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  .Q  A
)  <Q  ( C  .Q  B )  <->  ( /Q `  ( C  .pQ  A
) )  <Q  ( /Q `  ( C  .pQ  B ) ) ) )
48 lterpq 8803 . . . 4  |-  ( ( C  .pQ  A ) 
<pQ  ( C  .pQ  B
)  <->  ( /Q `  ( C  .pQ  A ) )  <Q  ( /Q `  ( C  .pQ  B
) ) )
4947, 48syl6bbr 255 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  .Q  A
)  <Q  ( C  .Q  B )  <->  ( C  .pQ  A )  <pQ  ( C 
.pQ  B ) ) )
5038, 40, 493bitr4d 277 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
512, 3, 4, 50ndmovord 6196 1  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   <.cop 3777   class class class wbr 4172    X. cxp 4835   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307   N.cnpi 8675    .N cmi 8677    <N clti 8678    .pQ cmpq 8680    <pQ cltpq 8681   Q.cnq 8683   /Qcerq 8685    .Q cmq 8687    <Q cltq 8689
This theorem is referenced by:  ltaddnq  8807  ltrnq  8812  addclprlem1  8849  mulclprlem  8852  mulclpr  8853  distrlem4pr  8859  1idpr  8862  prlem934  8866  prlem936  8880  reclem3pr  8882  reclem4pr  8883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ni 8705  df-mi 8707  df-lti 8708  df-mpq 8742  df-ltpq 8743  df-enq 8744  df-nq 8745  df-erq 8746  df-mq 8748  df-1nq 8749  df-ltnq 8751
  Copyright terms: Public domain W3C validator