Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltflcei Structured version   Unicode version

Theorem ltflcei 28424
Description: Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
ltflcei  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( |_ `  A )  <  B  <->  A  <  -u ( |_ `  -u B ) ) )

Proof of Theorem ltflcei
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 flltp1 11655 . . . . . 6  |-  ( A  e.  RR  ->  A  <  ( ( |_ `  A )  +  1 ) )
21ad3antrrr 729 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  < 
B )  /\  B  <_  A )  ->  A  <  ( ( |_ `  A )  +  1 ) )
3 renegcl 9677 . . . . . . . . 9  |-  ( B  e.  RR  ->  -u B  e.  RR )
4 flval 11649 . . . . . . . . 9  |-  ( -u B  e.  RR  ->  ( |_ `  -u B
)  =  ( iota_ x  e.  ZZ  ( x  <_  -u B  /\  -u B  <  ( x  +  1 ) ) ) )
53, 4syl 16 . . . . . . . 8  |-  ( B  e.  RR  ->  ( |_ `  -u B )  =  ( iota_ x  e.  ZZ  ( x  <_  -u B  /\  -u B  <  (
x  +  1 ) ) ) )
65ad3antlr 730 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  < 
B )  /\  B  <_  A )  ->  ( |_ `  -u B )  =  ( iota_ x  e.  ZZ  ( x  <_  -u B  /\  -u B  <  (
x  +  1 ) ) ) )
7 fllep1 11656 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  A  <_  ( ( |_ `  A )  +  1 ) )
87adantl 466 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  A  <_  ( ( |_ `  A )  +  1 ) )
9 reflcl 11651 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  RR )
10 peano2re 9547 . . . . . . . . . . . . . . . . 17  |-  ( ( |_ `  A )  e.  RR  ->  (
( |_ `  A
)  +  1 )  e.  RR )
119, 10syl 16 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  (
( |_ `  A
)  +  1 )  e.  RR )
1211adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( ( |_ `  A )  +  1 )  e.  RR )
13 letr 9473 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  (
( |_ `  A
)  +  1 )  e.  RR )  -> 
( ( B  <_  A  /\  A  <_  (
( |_ `  A
)  +  1 ) )  ->  B  <_  ( ( |_ `  A
)  +  1 ) ) )
1412, 13mpd3an3 1315 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( ( B  <_  A  /\  A  <_  (
( |_ `  A
)  +  1 ) )  ->  B  <_  ( ( |_ `  A
)  +  1 ) ) )
158, 14mpan2d 674 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  ->  B  <_  ( ( |_ `  A )  +  1 ) ) )
16 leneg 9847 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  ( ( |_ `  A )  +  1 )  e.  RR )  ->  ( B  <_ 
( ( |_ `  A )  +  1 )  <->  -u ( ( |_
`  A )  +  1 )  <_  -u B
) )
1711, 16sylan2 474 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  (
( |_ `  A
)  +  1 )  <->  -u ( ( |_ `  A )  +  1 )  <_  -u B ) )
1815, 17sylibd 214 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  -> 
-u ( ( |_
`  A )  +  1 )  <_  -u B
) )
1918ancoms 453 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <_  A  -> 
-u ( ( |_
`  A )  +  1 )  <_  -u B
) )
20 ltneg 9844 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  A
)  e.  RR  /\  B  e.  RR )  ->  ( ( |_ `  A )  <  B  <->  -u B  <  -u ( |_ `  A ) ) )
219, 20sylan 471 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( |_ `  A )  <  B  <->  -u B  <  -u ( |_ `  A ) ) )
229recnd 9417 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  CC )
23 ax-1cn 9345 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
24 negdi2 9672 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( |_
`  A )  +  1 )  =  (
-u ( |_ `  A )  -  1 ) )
2524oveq1d 6111 . . . . . . . . . . . . . . . . 17  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC )  ->  ( -u ( ( |_ `  A )  +  1 )  +  1 )  =  ( ( -u ( |_
`  A )  - 
1 )  +  1 ) )
26 negcl 9615 . . . . . . . . . . . . . . . . . 18  |-  ( ( |_ `  A )  e.  CC  ->  -u ( |_ `  A )  e.  CC )
27 npcan 9624 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u ( |_ `  A )  e.  CC  /\  1  e.  CC )  ->  ( ( -u ( |_ `  A )  -  1 )  +  1 )  =  -u ( |_ `  A ) )
2826, 27sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( -u ( |_ `  A )  - 
1 )  +  1 )  =  -u ( |_ `  A ) )
2925, 28eqtr2d 2476 . . . . . . . . . . . . . . . 16  |-  ( ( ( |_ `  A
)  e.  CC  /\  1  e.  CC )  -> 
-u ( |_ `  A )  =  (
-u ( ( |_
`  A )  +  1 )  +  1 ) )
3022, 23, 29sylancl 662 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  -u ( |_ `  A )  =  ( -u ( ( |_ `  A )  +  1 )  +  1 ) )
3130breq2d 4309 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  ( -u B  <  -u ( |_ `  A )  <->  -u B  < 
( -u ( ( |_
`  A )  +  1 )  +  1 ) ) )
3231adantr 465 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u B  <  -u ( |_ `  A
)  <->  -u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) ) )
3321, 32bitrd 253 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( |_ `  A )  <  B  <->  -u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) ) )
3433biimpd 207 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( |_ `  A )  <  B  -> 
-u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) ) )
3519, 34anim12d 563 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  <_  A  /\  ( |_ `  A )  <  B
)  ->  ( -u (
( |_ `  A
)  +  1 )  <_  -u B  /\  -u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) ) ) )
3635ancomsd 454 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( |_
`  A )  < 
B  /\  B  <_  A )  ->  ( -u (
( |_ `  A
)  +  1 )  <_  -u B  /\  -u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) ) ) )
3736impl 620 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  < 
B )  /\  B  <_  A )  ->  ( -u ( ( |_ `  A )  +  1 )  <_  -u B  /\  -u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) ) )
38 flcl 11650 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  ZZ )
3938peano2zd 10755 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
( |_ `  A
)  +  1 )  e.  ZZ )
4039znegcld 10754 . . . . . . . . . 10  |-  ( A  e.  RR  ->  -u (
( |_ `  A
)  +  1 )  e.  ZZ )
41 rebtwnz 10957 . . . . . . . . . . 11  |-  ( -u B  e.  RR  ->  E! x  e.  ZZ  (
x  <_  -u B  /\  -u B  <  ( x  +  1 ) ) )
423, 41syl 16 . . . . . . . . . 10  |-  ( B  e.  RR  ->  E! x  e.  ZZ  (
x  <_  -u B  /\  -u B  <  ( x  +  1 ) ) )
43 breq1 4300 . . . . . . . . . . . 12  |-  ( x  =  -u ( ( |_
`  A )  +  1 )  ->  (
x  <_  -u B  <->  -u ( ( |_ `  A )  +  1 )  <_  -u B ) )
44 oveq1 6103 . . . . . . . . . . . . 13  |-  ( x  =  -u ( ( |_
`  A )  +  1 )  ->  (
x  +  1 )  =  ( -u (
( |_ `  A
)  +  1 )  +  1 ) )
4544breq2d 4309 . . . . . . . . . . . 12  |-  ( x  =  -u ( ( |_
`  A )  +  1 )  ->  ( -u B  <  ( x  +  1 )  <->  -u B  < 
( -u ( ( |_
`  A )  +  1 )  +  1 ) ) )
4643, 45anbi12d 710 . . . . . . . . . . 11  |-  ( x  =  -u ( ( |_
`  A )  +  1 )  ->  (
( x  <_  -u B  /\  -u B  <  (
x  +  1 ) )  <->  ( -u (
( |_ `  A
)  +  1 )  <_  -u B  /\  -u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) ) ) )
4746riota2 6080 . . . . . . . . . 10  |-  ( (
-u ( ( |_
`  A )  +  1 )  e.  ZZ  /\  E! x  e.  ZZ  ( x  <_  -u B  /\  -u B  <  (
x  +  1 ) ) )  ->  (
( -u ( ( |_
`  A )  +  1 )  <_  -u B  /\  -u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  -u B  /\  -u B  <  ( x  +  1 ) ) )  = 
-u ( ( |_
`  A )  +  1 ) ) )
4840, 42, 47syl2an 477 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u (
( |_ `  A
)  +  1 )  <_  -u B  /\  -u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  -u B  /\  -u B  <  ( x  +  1 ) ) )  = 
-u ( ( |_
`  A )  +  1 ) ) )
4948ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  < 
B )  /\  B  <_  A )  ->  (
( -u ( ( |_
`  A )  +  1 )  <_  -u B  /\  -u B  <  ( -u ( ( |_ `  A )  +  1 )  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  -u B  /\  -u B  <  ( x  +  1 ) ) )  = 
-u ( ( |_
`  A )  +  1 ) ) )
5037, 49mpbid 210 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  < 
B )  /\  B  <_  A )  ->  ( iota_ x  e.  ZZ  (
x  <_  -u B  /\  -u B  <  ( x  +  1 ) ) )  =  -u (
( |_ `  A
)  +  1 ) )
516, 50eqtrd 2475 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  < 
B )  /\  B  <_  A )  ->  ( |_ `  -u B )  = 
-u ( ( |_
`  A )  +  1 ) )
5238zcnd 10753 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  CC )
53 peano2cn 9546 . . . . . . . . 9  |-  ( ( |_ `  A )  e.  CC  ->  (
( |_ `  A
)  +  1 )  e.  CC )
5452, 53syl 16 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( |_ `  A
)  +  1 )  e.  CC )
553flcld 11653 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( |_ `  -u B )  e.  ZZ )
5655zcnd 10753 . . . . . . . 8  |-  ( B  e.  RR  ->  ( |_ `  -u B )  e.  CC )
57 negcon2 9667 . . . . . . . 8  |-  ( ( ( ( |_ `  A )  +  1 )  e.  CC  /\  ( |_ `  -u B
)  e.  CC )  ->  ( ( ( |_ `  A )  +  1 )  = 
-u ( |_ `  -u B )  <->  ( |_ `  -u B )  =  -u ( ( |_ `  A )  +  1 ) ) )
5854, 56, 57syl2an 477 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( |_
`  A )  +  1 )  =  -u ( |_ `  -u B
)  <->  ( |_ `  -u B )  =  -u ( ( |_ `  A )  +  1 ) ) )
5958ad2antrr 725 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  < 
B )  /\  B  <_  A )  ->  (
( ( |_ `  A )  +  1 )  =  -u ( |_ `  -u B )  <->  ( |_ `  -u B )  =  -u ( ( |_ `  A )  +  1 ) ) )
6051, 59mpbird 232 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  < 
B )  /\  B  <_  A )  ->  (
( |_ `  A
)  +  1 )  =  -u ( |_ `  -u B ) )
612, 60breqtrd 4321 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  < 
B )  /\  B  <_  A )  ->  A  <  -u ( |_ `  -u B ) )
6261ex 434 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  <  B
)  ->  ( B  <_  A  ->  A  <  -u ( |_ `  -u B
) ) )
63 ltnle 9459 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -.  B  <_  A )
)
64 ceige 11689 . . . . . . 7  |-  ( B  e.  RR  ->  B  <_ 
-u ( |_ `  -u B ) )
6564adantl 466 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  -u ( |_
`  -u B ) )
66 ceicl 11687 . . . . . . . . 9  |-  ( B  e.  RR  ->  -u ( |_ `  -u B )  e.  ZZ )
6766zred 10752 . . . . . . . 8  |-  ( B  e.  RR  ->  -u ( |_ `  -u B )  e.  RR )
6867adantl 466 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  -> 
-u ( |_ `  -u B )  e.  RR )
69 ltletr 9471 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -u ( |_ `  -u B )  e.  RR )  ->  (
( A  <  B  /\  B  <_  -u ( |_ `  -u B ) )  ->  A  <  -u ( |_ `  -u B ) ) )
7068, 69mpd3an3 1315 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  /\  B  <_  -u ( |_ `  -u B
) )  ->  A  <  -u ( |_ `  -u B ) ) )
7165, 70mpan2d 674 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <  -u ( |_ `  -u B ) ) )
7263, 71sylbird 235 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  B  <_  A  ->  A  <  -u ( |_ `  -u B ) ) )
7372adantr 465 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  <  B
)  ->  ( -.  B  <_  A  ->  A  <  -u ( |_ `  -u B ) ) )
7462, 73pm2.61d 158 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( |_ `  A )  <  B
)  ->  A  <  -u ( |_ `  -u B
) )
75 flval 11649 . . . . . . 7  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
7675ad3antrrr 729 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  /\  B  <_  A )  -> 
( |_ `  A
)  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) ) )
77 ceim1l 11691 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  ( -u ( |_ `  -u B
)  -  1 )  <  B )
7877adantl 466 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u ( |_
`  -u B )  - 
1 )  <  B
)
79 peano2rem 9680 . . . . . . . . . . . . . 14  |-  ( -u ( |_ `  -u B
)  e.  RR  ->  (
-u ( |_ `  -u B )  -  1 )  e.  RR )
8067, 79syl 16 . . . . . . . . . . . . 13  |-  ( B  e.  RR  ->  ( -u ( |_ `  -u B
)  -  1 )  e.  RR )
8180adantl 466 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u ( |_
`  -u B )  - 
1 )  e.  RR )
82 ltletr 9471 . . . . . . . . . . . . . 14  |-  ( ( ( -u ( |_
`  -u B )  - 
1 )  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  ( ( ( -u ( |_ `  -u B
)  -  1 )  <  B  /\  B  <_  A )  ->  ( -u ( |_ `  -u B
)  -  1 )  <  A ) )
83 ltle 9468 . . . . . . . . . . . . . . 15  |-  ( ( ( -u ( |_
`  -u B )  - 
1 )  e.  RR  /\  A  e.  RR )  ->  ( ( -u ( |_ `  -u B
)  -  1 )  <  A  ->  ( -u ( |_ `  -u B
)  -  1 )  <_  A ) )
84833adant2 1007 . . . . . . . . . . . . . 14  |-  ( ( ( -u ( |_
`  -u B )  - 
1 )  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  ( ( -u ( |_ `  -u B )  - 
1 )  <  A  ->  ( -u ( |_
`  -u B )  - 
1 )  <_  A
) )
8582, 84syld 44 . . . . . . . . . . . . 13  |-  ( ( ( -u ( |_
`  -u B )  - 
1 )  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  ( ( ( -u ( |_ `  -u B
)  -  1 )  <  B  /\  B  <_  A )  ->  ( -u ( |_ `  -u B
)  -  1 )  <_  A ) )
86853com13 1192 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( -u ( |_ `  -u B
)  -  1 )  e.  RR )  -> 
( ( ( -u ( |_ `  -u B
)  -  1 )  <  B  /\  B  <_  A )  ->  ( -u ( |_ `  -u B
)  -  1 )  <_  A ) )
8781, 86mpd3an3 1315 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( -u ( |_ `  -u B
)  -  1 )  <  B  /\  B  <_  A )  ->  ( -u ( |_ `  -u B
)  -  1 )  <_  A ) )
8878, 87mpand 675 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <_  A  ->  ( -u ( |_
`  -u B )  - 
1 )  <_  A
) )
8966zcnd 10753 . . . . . . . . . . . . . 14  |-  ( B  e.  RR  ->  -u ( |_ `  -u B )  e.  CC )
90 npcan 9624 . . . . . . . . . . . . . 14  |-  ( (
-u ( |_ `  -u B )  e.  CC  /\  1  e.  CC )  ->  ( ( -u ( |_ `  -u B
)  -  1 )  +  1 )  = 
-u ( |_ `  -u B ) )
9189, 23, 90sylancl 662 . . . . . . . . . . . . 13  |-  ( B  e.  RR  ->  (
( -u ( |_ `  -u B )  -  1 )  +  1 )  =  -u ( |_ `  -u B ) )
9291breq2d 4309 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  ( A  <  ( ( -u ( |_ `  -u B
)  -  1 )  +  1 )  <->  A  <  -u ( |_ `  -u B
) ) )
9392biimprd 223 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( A  <  -u ( |_ `  -u B )  ->  A  <  ( ( -u ( |_ `  -u B )  - 
1 )  +  1 ) ) )
9493adantl 466 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  -u ( |_ `  -u B )  ->  A  <  ( ( -u ( |_ `  -u B
)  -  1 )  +  1 ) ) )
9588, 94anim12d 563 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  <_  A  /\  A  <  -u ( |_ `  -u B ) )  ->  ( ( -u ( |_ `  -u B
)  -  1 )  <_  A  /\  A  <  ( ( -u ( |_ `  -u B )  - 
1 )  +  1 ) ) ) )
9695ancomsd 454 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <  -u ( |_ `  -u B
)  /\  B  <_  A )  ->  ( ( -u ( |_ `  -u B
)  -  1 )  <_  A  /\  A  <  ( ( -u ( |_ `  -u B )  - 
1 )  +  1 ) ) ) )
9796impl 620 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  /\  B  <_  A )  -> 
( ( -u ( |_ `  -u B )  - 
1 )  <_  A  /\  A  <  ( (
-u ( |_ `  -u B )  -  1 )  +  1 ) ) )
98 peano2zm 10693 . . . . . . . . . 10  |-  ( -u ( |_ `  -u B
)  e.  ZZ  ->  (
-u ( |_ `  -u B )  -  1 )  e.  ZZ )
9966, 98syl 16 . . . . . . . . 9  |-  ( B  e.  RR  ->  ( -u ( |_ `  -u B
)  -  1 )  e.  ZZ )
100 rebtwnz 10957 . . . . . . . . 9  |-  ( A  e.  RR  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
101 breq1 4300 . . . . . . . . . . 11  |-  ( x  =  ( -u ( |_ `  -u B )  - 
1 )  ->  (
x  <_  A  <->  ( -u ( |_ `  -u B )  - 
1 )  <_  A
) )
102 oveq1 6103 . . . . . . . . . . . 12  |-  ( x  =  ( -u ( |_ `  -u B )  - 
1 )  ->  (
x  +  1 )  =  ( ( -u ( |_ `  -u B
)  -  1 )  +  1 ) )
103102breq2d 4309 . . . . . . . . . . 11  |-  ( x  =  ( -u ( |_ `  -u B )  - 
1 )  ->  ( A  <  ( x  + 
1 )  <->  A  <  ( ( -u ( |_
`  -u B )  - 
1 )  +  1 ) ) )
104101, 103anbi12d 710 . . . . . . . . . 10  |-  ( x  =  ( -u ( |_ `  -u B )  - 
1 )  ->  (
( x  <_  A  /\  A  <  ( x  +  1 ) )  <-> 
( ( -u ( |_ `  -u B )  - 
1 )  <_  A  /\  A  <  ( (
-u ( |_ `  -u B )  -  1 )  +  1 ) ) ) )
105104riota2 6080 . . . . . . . . 9  |-  ( ( ( -u ( |_
`  -u B )  - 
1 )  e.  ZZ  /\  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  ->  ( ( (
-u ( |_ `  -u B )  -  1 )  <_  A  /\  A  <  ( ( -u ( |_ `  -u B
)  -  1 )  +  1 ) )  <-> 
( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  =  ( -u ( |_ `  -u B )  - 
1 ) ) )
10699, 100, 105syl2anr 478 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( -u ( |_ `  -u B
)  -  1 )  <_  A  /\  A  <  ( ( -u ( |_ `  -u B )  - 
1 )  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )  =  ( -u ( |_
`  -u B )  - 
1 ) ) )
107106ad2antrr 725 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  /\  B  <_  A )  -> 
( ( ( -u ( |_ `  -u B
)  -  1 )  <_  A  /\  A  <  ( ( -u ( |_ `  -u B )  - 
1 )  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )  =  ( -u ( |_
`  -u B )  - 
1 ) ) )
10897, 107mpbid 210 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  /\  B  <_  A )  -> 
( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  =  ( -u ( |_ `  -u B )  - 
1 ) )
10976, 108eqtrd 2475 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  /\  B  <_  A )  -> 
( |_ `  A
)  =  ( -u ( |_ `  -u B
)  -  1 ) )
11077ad3antlr 730 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  /\  B  <_  A )  -> 
( -u ( |_ `  -u B )  -  1 )  <  B )
111109, 110eqbrtrd 4317 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  /\  B  <_  A )  -> 
( |_ `  A
)  <  B )
112111ex 434 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  ->  ( B  <_  A  ->  ( |_ `  A )  <  B
) )
113 flle 11654 . . . . . . 7  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
114113adantr 465 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( |_ `  A
)  <_  A )
1159adantr 465 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( |_ `  A
)  e.  RR )
116 lelttr 9470 . . . . . . . 8  |-  ( ( ( |_ `  A
)  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( ( |_ `  A )  <_  A  /\  A  <  B )  ->  ( |_ `  A )  <  B
) )
1171163coml 1194 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( |_ `  A )  e.  RR )  ->  (
( ( |_ `  A )  <_  A  /\  A  <  B )  ->  ( |_ `  A )  <  B
) )
118115, 117mpd3an3 1315 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( |_
`  A )  <_  A  /\  A  <  B
)  ->  ( |_ `  A )  <  B
) )
119114, 118mpand 675 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( |_ `  A
)  <  B )
)
12063, 119sylbird 235 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  B  <_  A  ->  ( |_ `  A )  <  B
) )
121120adantr 465 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  ->  ( -.  B  <_  A  ->  ( |_ `  A )  <  B
) )
122112, 121pm2.61d 158 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  -u ( |_ `  -u B ) )  ->  ( |_ `  A )  <  B
)
12374, 122impbida 828 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( |_ `  A )  <  B  <->  A  <  -u ( |_ `  -u B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E!wreu 2722   class class class wbr 4297   ` cfv 5423   iota_crio 6056  (class class class)co 6096   CCcc 9285   RRcr 9286   1c1 9288    + caddc 9290    < clt 9423    <_ cle 9424    - cmin 9600   -ucneg 9601   ZZcz 10651   |_cfl 11645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-sup 7696  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-n0 10585  df-z 10652  df-uz 10867  df-fl 11647
This theorem is referenced by:  leceifl  28425
  Copyright terms: Public domain W3C validator