MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem7 Structured version   Unicode version

Theorem ltexprlem7 9207
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  B  C_  ( A  +P.  C ) )
Distinct variable groups:    x, y, A    x, B, y    x, C
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem7
Dummy variables  z  w  v  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . . . 8  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
21ltexprlem5 9205 . . . . . . 7  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
3 ltaddpr 9199 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  <P  ( A  +P.  C ) )
4 addclpr 9183 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  +P.  C
)  e.  P. )
5 ltprord 9195 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  ( A  +P.  C )  e.  P. )  -> 
( A  <P  ( A  +P.  C )  <->  A  C.  ( A  +P.  C ) ) )
64, 5syldan 467 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  <P  ( A  +P.  C )  <->  A  C.  ( A  +P.  C ) ) )
73, 6mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  C.  ( A  +P.  C ) )
87pssssd 3450 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  C_  ( A  +P.  C ) )
98sseld 3352 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( w  e.  A  ->  w  e.  ( A  +P.  C ) ) )
109a1d 25 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( w  e.  B  ->  ( w  e.  A  ->  w  e.  ( A  +P.  C ) ) ) )
1110a1d 25 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( B  e.  P.  ->  ( w  e.  B  ->  ( w  e.  A  ->  w  e.  ( A  +P.  C ) ) ) ) )
1211com4r 86 . . . . . . . . 9  |-  ( w  e.  A  ->  (
( A  e.  P.  /\  C  e.  P. )  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
1312exp3a 436 . . . . . . . 8  |-  ( w  e.  A  ->  ( A  e.  P.  ->  ( C  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
14 prnmadd 9162 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  w  e.  B )  ->  E. v ( w  +Q  v )  e.  B )
1514ex 434 . . . . . . . . . . 11  |-  ( B  e.  P.  ->  (
w  e.  B  ->  E. v ( w  +Q  v )  e.  B
) )
16 elprnq 9156 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( w  +Q  v )  e.  Q. )
17 addnqf 9113 . . . . . . . . . . . . . . . . . 18  |-  +Q  :
( Q.  X.  Q. )
--> Q.
1817fdmi 5561 . . . . . . . . . . . . . . . . 17  |-  dom  +Q  =  ( Q.  X.  Q. )
19 0nnq 9089 . . . . . . . . . . . . . . . . 17  |-  -.  (/)  e.  Q.
2018, 19ndmovrcl 6248 . . . . . . . . . . . . . . . 16  |-  ( ( w  +Q  v )  e.  Q.  ->  (
w  e.  Q.  /\  v  e.  Q. )
)
2116, 20syl 16 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( w  e. 
Q.  /\  v  e.  Q. ) )
2221simpld 456 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  w  e.  Q. )
23 vex 2973 . . . . . . . . . . . . . . . . . . 19  |-  v  e. 
_V
2423prlem934 9198 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  P.  ->  E. z  e.  A  -.  (
z  +Q  v )  e.  A )
2524adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  E. z  e.  A  -.  ( z  +Q  v
)  e.  A )
26 prub 9159 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  w  e.  Q. )  ->  ( -.  w  e.  A  ->  z  <Q  w ) )
27 ltexnq 9140 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  Q.  ->  (
z  <Q  w  <->  E. x
( z  +Q  x
)  =  w ) )
2827adantl 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  w  e.  Q. )  ->  ( z  <Q  w 
<->  E. x ( z  +Q  x )  =  w ) )
2926, 28sylibd 214 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  w  e.  Q. )  ->  ( -.  w  e.  A  ->  E. x
( z  +Q  x
)  =  w ) )
3029ex 434 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( w  e.  Q.  ->  ( -.  w  e.  A  ->  E. x
( z  +Q  x
)  =  w ) ) )
3130ad2ant2r 741 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  (
w  e.  Q.  ->  ( -.  w  e.  A  ->  E. x ( z  +Q  x )  =  w ) ) )
32 vex 2973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  z  e. 
_V
33 vex 2973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  x  e. 
_V
34 addcomnq 9116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f  +Q  g )  =  ( g  +Q  f
)
35 addassnq 9123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( f  +Q  g )  +Q  h )  =  ( f  +Q  (
g  +Q  h ) )
3632, 23, 33, 34, 35caov32 6289 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  +Q  v )  +Q  x )  =  ( ( z  +Q  x )  +Q  v
)
37 oveq1 6097 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  +Q  x )  =  w  ->  (
( z  +Q  x
)  +Q  v )  =  ( w  +Q  v ) )
3836, 37syl5eq 2485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  +Q  x )  =  w  ->  (
( z  +Q  v
)  +Q  x )  =  ( w  +Q  v ) )
3938eleq1d 2507 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  +Q  x )  =  w  ->  (
( ( z  +Q  v )  +Q  x
)  e.  B  <->  ( w  +Q  v )  e.  B
) )
4039biimpar 482 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( z  +Q  x
)  =  w  /\  ( w  +Q  v
)  e.  B )  ->  ( ( z  +Q  v )  +Q  x )  e.  B
)
41 ovex 6115 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  +Q  v )  e. 
_V
42 eleq1 2501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  =  ( z  +Q  v )  ->  (
y  e.  A  <->  ( z  +Q  v )  e.  A
) )
4342notbid 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  =  ( z  +Q  v )  ->  ( -.  y  e.  A  <->  -.  ( z  +Q  v
)  e.  A ) )
44 oveq1 6097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  =  ( z  +Q  v )  ->  (
y  +Q  x )  =  ( ( z  +Q  v )  +Q  x ) )
4544eleq1d 2507 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  =  ( z  +Q  v )  ->  (
( y  +Q  x
)  e.  B  <->  ( (
z  +Q  v )  +Q  x )  e.  B ) )
4643, 45anbi12d 705 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  =  ( z  +Q  v )  ->  (
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  <->  ( -.  ( z  +Q  v
)  e.  A  /\  ( ( z  +Q  v )  +Q  x
)  e.  B ) ) )
4741, 46spcev 3061 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( -.  ( z  +Q  v )  e.  A  /\  ( ( z  +Q  v )  +Q  x
)  e.  B )  ->  E. y ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B ) )
481abeq2i 2548 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
4947, 48sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( -.  ( z  +Q  v )  e.  A  /\  ( ( z  +Q  v )  +Q  x
)  e.  B )  ->  x  e.  C
)
5040, 49sylan2 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( -.  ( z  +Q  v )  e.  A  /\  ( ( z  +Q  x )  =  w  /\  ( w  +Q  v )  e.  B
) )  ->  x  e.  C )
51 df-plp 9148 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  +P.  =  ( x  e.  P. ,  w  e.  P.  |->  { z  |  E. f  e.  x  E. v  e.  w  z  =  ( f  +Q  v ) } )
52 addclnq 9110 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  e.  Q.  /\  v  e.  Q. )  ->  ( f  +Q  v
)  e.  Q. )
5351, 52genpprecl 9166 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( z  e.  A  /\  x  e.  C )  ->  (
z  +Q  x )  e.  ( A  +P.  C ) ) )
5450, 53sylan2i 650 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( z  e.  A  /\  ( -.  ( z  +Q  v
)  e.  A  /\  ( ( z  +Q  x )  =  w  /\  ( w  +Q  v )  e.  B
) ) )  -> 
( z  +Q  x
)  e.  ( A  +P.  C ) ) )
5554exp4d 606 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  A  ->  ( -.  ( z  +Q  v )  e.  A  ->  ( (
( z  +Q  x
)  =  w  /\  ( w  +Q  v
)  e.  B )  ->  ( z  +Q  x )  e.  ( A  +P.  C ) ) ) ) )
5655imp42 591 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e. 
P.  /\  C  e.  P. )  /\  (
z  e.  A  /\  -.  ( z  +Q  v
)  e.  A ) )  /\  ( ( z  +Q  x )  =  w  /\  (
w  +Q  v )  e.  B ) )  ->  ( z  +Q  x )  e.  ( A  +P.  C ) )
57 eleq1 2501 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  +Q  x )  =  w  ->  (
( z  +Q  x
)  e.  ( A  +P.  C )  <->  w  e.  ( A  +P.  C ) ) )
5857ad2antrl 722 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e. 
P.  /\  C  e.  P. )  /\  (
z  e.  A  /\  -.  ( z  +Q  v
)  e.  A ) )  /\  ( ( z  +Q  x )  =  w  /\  (
w  +Q  v )  e.  B ) )  ->  ( ( z  +Q  x )  e.  ( A  +P.  C
)  <->  w  e.  ( A  +P.  C ) ) )
5956, 58mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
P.  /\  C  e.  P. )  /\  (
z  e.  A  /\  -.  ( z  +Q  v
)  e.  A ) )  /\  ( ( z  +Q  x )  =  w  /\  (
w  +Q  v )  e.  B ) )  ->  w  e.  ( A  +P.  C ) )
6059exp32 602 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  (
( z  +Q  x
)  =  w  -> 
( ( w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C ) ) ) )
6160exlimdv 1695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  ( E. x ( z  +Q  x )  =  w  ->  ( ( w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C ) ) ) )
6231, 61syl6d 69 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  (
w  e.  Q.  ->  ( -.  w  e.  A  ->  ( ( w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
6325, 62rexlimddv 2843 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( w  e.  Q.  ->  ( -.  w  e.  A  ->  ( (
w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C
) ) ) ) )
6463com14 88 . . . . . . . . . . . . . . 15  |-  ( ( w  +Q  v )  e.  B  ->  (
w  e.  Q.  ->  ( -.  w  e.  A  ->  ( ( A  e. 
P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
6564adantl 463 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( w  e. 
Q.  ->  ( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C ) ) ) ) )
6622, 65mpd 15 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C ) ) ) )
6766ex 434 . . . . . . . . . . . 12  |-  ( B  e.  P.  ->  (
( w  +Q  v
)  e.  B  -> 
( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
6867exlimdv 1695 . . . . . . . . . . 11  |-  ( B  e.  P.  ->  ( E. v ( w  +Q  v )  e.  B  ->  ( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
6915, 68syld 44 . . . . . . . . . 10  |-  ( B  e.  P.  ->  (
w  e.  B  -> 
( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
7069com4t 85 . . . . . . . . 9  |-  ( -.  w  e.  A  -> 
( ( A  e. 
P.  /\  C  e.  P. )  ->  ( B  e.  P.  ->  (
w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
7170exp3a 436 . . . . . . . 8  |-  ( -.  w  e.  A  -> 
( A  e.  P.  ->  ( C  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
7213, 71pm2.61i 164 . . . . . . 7  |-  ( A  e.  P.  ->  ( C  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
732, 72syl5 32 . . . . . 6  |-  ( A  e.  P.  ->  (
( B  e.  P.  /\  A  C.  B )  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
7473exp3a 436 . . . . 5  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( A  C.  B  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
7574com34 83 . . . 4  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( B  e.  P.  ->  ( A  C.  B  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
7675pm2.43d 48 . . 3  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( A  C.  B  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
7776imp31 432 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) )
7877ssrdv 3359 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  B  C_  ( A  +P.  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364   E.wex 1591    e. wcel 1761   {cab 2427   E.wrex 2714    C_ wss 3325    C. wpss 3326   class class class wbr 4289    X. cxp 4834  (class class class)co 6090   Q.cnq 9015    +Q cplq 9018    <Q cltq 9021   P.cnp 9022    +P. cpp 9024    <P cltp 9026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-omul 6921  df-er 7097  df-ni 9037  df-pli 9038  df-mi 9039  df-lti 9040  df-plpq 9073  df-mpq 9074  df-ltpq 9075  df-enq 9076  df-nq 9077  df-erq 9078  df-plq 9079  df-mq 9080  df-1nq 9081  df-rq 9082  df-ltnq 9083  df-np 9146  df-plp 9148  df-ltp 9150
This theorem is referenced by:  ltexpri  9208
  Copyright terms: Public domain W3C validator