MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem7 Structured version   Unicode version

Theorem ltexprlem7 9226
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  B  C_  ( A  +P.  C ) )
Distinct variable groups:    x, y, A    x, B, y    x, C
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem7
Dummy variables  z  w  v  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . . . 8  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
21ltexprlem5 9224 . . . . . . 7  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
3 ltaddpr 9218 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  <P  ( A  +P.  C ) )
4 addclpr 9202 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  +P.  C
)  e.  P. )
5 ltprord 9214 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  ( A  +P.  C )  e.  P. )  -> 
( A  <P  ( A  +P.  C )  <->  A  C.  ( A  +P.  C ) ) )
64, 5syldan 470 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  <P  ( A  +P.  C )  <->  A  C.  ( A  +P.  C ) ) )
73, 6mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  C.  ( A  +P.  C ) )
87pssssd 3468 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  A  C_  ( A  +P.  C ) )
98sseld 3370 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( w  e.  A  ->  w  e.  ( A  +P.  C ) ) )
109a1d 25 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( w  e.  B  ->  ( w  e.  A  ->  w  e.  ( A  +P.  C ) ) ) )
1110a1d 25 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( B  e.  P.  ->  ( w  e.  B  ->  ( w  e.  A  ->  w  e.  ( A  +P.  C ) ) ) ) )
1211com4r 86 . . . . . . . . 9  |-  ( w  e.  A  ->  (
( A  e.  P.  /\  C  e.  P. )  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
1312expd 436 . . . . . . . 8  |-  ( w  e.  A  ->  ( A  e.  P.  ->  ( C  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
14 prnmadd 9181 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  w  e.  B )  ->  E. v ( w  +Q  v )  e.  B )
1514ex 434 . . . . . . . . . . 11  |-  ( B  e.  P.  ->  (
w  e.  B  ->  E. v ( w  +Q  v )  e.  B
) )
16 elprnq 9175 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( w  +Q  v )  e.  Q. )
17 addnqf 9132 . . . . . . . . . . . . . . . . . 18  |-  +Q  :
( Q.  X.  Q. )
--> Q.
1817fdmi 5579 . . . . . . . . . . . . . . . . 17  |-  dom  +Q  =  ( Q.  X.  Q. )
19 0nnq 9108 . . . . . . . . . . . . . . . . 17  |-  -.  (/)  e.  Q.
2018, 19ndmovrcl 6264 . . . . . . . . . . . . . . . 16  |-  ( ( w  +Q  v )  e.  Q.  ->  (
w  e.  Q.  /\  v  e.  Q. )
)
2116, 20syl 16 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( w  e. 
Q.  /\  v  e.  Q. ) )
2221simpld 459 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  w  e.  Q. )
23 vex 2990 . . . . . . . . . . . . . . . . . . 19  |-  v  e. 
_V
2423prlem934 9217 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  P.  ->  E. z  e.  A  -.  (
z  +Q  v )  e.  A )
2524adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  E. z  e.  A  -.  ( z  +Q  v
)  e.  A )
26 prub 9178 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  w  e.  Q. )  ->  ( -.  w  e.  A  ->  z  <Q  w ) )
27 ltexnq 9159 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  Q.  ->  (
z  <Q  w  <->  E. x
( z  +Q  x
)  =  w ) )
2827adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  w  e.  Q. )  ->  ( z  <Q  w 
<->  E. x ( z  +Q  x )  =  w ) )
2926, 28sylibd 214 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  w  e.  Q. )  ->  ( -.  w  e.  A  ->  E. x
( z  +Q  x
)  =  w ) )
3029ex 434 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( w  e.  Q.  ->  ( -.  w  e.  A  ->  E. x
( z  +Q  x
)  =  w ) ) )
3130ad2ant2r 746 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  (
w  e.  Q.  ->  ( -.  w  e.  A  ->  E. x ( z  +Q  x )  =  w ) ) )
32 vex 2990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  z  e. 
_V
33 vex 2990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  x  e. 
_V
34 addcomnq 9135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f  +Q  g )  =  ( g  +Q  f
)
35 addassnq 9142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( f  +Q  g )  +Q  h )  =  ( f  +Q  (
g  +Q  h ) )
3632, 23, 33, 34, 35caov32 6305 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  +Q  v )  +Q  x )  =  ( ( z  +Q  x )  +Q  v
)
37 oveq1 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  +Q  x )  =  w  ->  (
( z  +Q  x
)  +Q  v )  =  ( w  +Q  v ) )
3836, 37syl5eq 2487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  +Q  x )  =  w  ->  (
( z  +Q  v
)  +Q  x )  =  ( w  +Q  v ) )
3938eleq1d 2509 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  +Q  x )  =  w  ->  (
( ( z  +Q  v )  +Q  x
)  e.  B  <->  ( w  +Q  v )  e.  B
) )
4039biimpar 485 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( z  +Q  x
)  =  w  /\  ( w  +Q  v
)  e.  B )  ->  ( ( z  +Q  v )  +Q  x )  e.  B
)
41 ovex 6131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  +Q  v )  e. 
_V
42 eleq1 2503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  =  ( z  +Q  v )  ->  (
y  e.  A  <->  ( z  +Q  v )  e.  A
) )
4342notbid 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  =  ( z  +Q  v )  ->  ( -.  y  e.  A  <->  -.  ( z  +Q  v
)  e.  A ) )
44 oveq1 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( y  =  ( z  +Q  v )  ->  (
y  +Q  x )  =  ( ( z  +Q  v )  +Q  x ) )
4544eleq1d 2509 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  =  ( z  +Q  v )  ->  (
( y  +Q  x
)  e.  B  <->  ( (
z  +Q  v )  +Q  x )  e.  B ) )
4643, 45anbi12d 710 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  =  ( z  +Q  v )  ->  (
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  <->  ( -.  ( z  +Q  v
)  e.  A  /\  ( ( z  +Q  v )  +Q  x
)  e.  B ) ) )
4741, 46spcev 3079 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( -.  ( z  +Q  v )  e.  A  /\  ( ( z  +Q  v )  +Q  x
)  e.  B )  ->  E. y ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B ) )
481abeq2i 2554 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
4947, 48sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( -.  ( z  +Q  v )  e.  A  /\  ( ( z  +Q  v )  +Q  x
)  e.  B )  ->  x  e.  C
)
5040, 49sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( -.  ( z  +Q  v )  e.  A  /\  ( ( z  +Q  x )  =  w  /\  ( w  +Q  v )  e.  B
) )  ->  x  e.  C )
51 df-plp 9167 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  +P.  =  ( x  e.  P. ,  w  e.  P.  |->  { z  |  E. f  e.  x  E. v  e.  w  z  =  ( f  +Q  v ) } )
52 addclnq 9129 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  e.  Q.  /\  v  e.  Q. )  ->  ( f  +Q  v
)  e.  Q. )
5351, 52genpprecl 9185 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( z  e.  A  /\  x  e.  C )  ->  (
z  +Q  x )  e.  ( A  +P.  C ) ) )
5450, 53sylan2i 655 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( z  e.  A  /\  ( -.  ( z  +Q  v
)  e.  A  /\  ( ( z  +Q  x )  =  w  /\  ( w  +Q  v )  e.  B
) ) )  -> 
( z  +Q  x
)  e.  ( A  +P.  C ) ) )
5554exp4d 609 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  A  ->  ( -.  ( z  +Q  v )  e.  A  ->  ( (
( z  +Q  x
)  =  w  /\  ( w  +Q  v
)  e.  B )  ->  ( z  +Q  x )  e.  ( A  +P.  C ) ) ) ) )
5655imp42 594 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e. 
P.  /\  C  e.  P. )  /\  (
z  e.  A  /\  -.  ( z  +Q  v
)  e.  A ) )  /\  ( ( z  +Q  x )  =  w  /\  (
w  +Q  v )  e.  B ) )  ->  ( z  +Q  x )  e.  ( A  +P.  C ) )
57 eleq1 2503 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  +Q  x )  =  w  ->  (
( z  +Q  x
)  e.  ( A  +P.  C )  <->  w  e.  ( A  +P.  C ) ) )
5857ad2antrl 727 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e. 
P.  /\  C  e.  P. )  /\  (
z  e.  A  /\  -.  ( z  +Q  v
)  e.  A ) )  /\  ( ( z  +Q  x )  =  w  /\  (
w  +Q  v )  e.  B ) )  ->  ( ( z  +Q  x )  e.  ( A  +P.  C
)  <->  w  e.  ( A  +P.  C ) ) )
5956, 58mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
P.  /\  C  e.  P. )  /\  (
z  e.  A  /\  -.  ( z  +Q  v
)  e.  A ) )  /\  ( ( z  +Q  x )  =  w  /\  (
w  +Q  v )  e.  B ) )  ->  w  e.  ( A  +P.  C ) )
6059exp32 605 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  (
( z  +Q  x
)  =  w  -> 
( ( w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C ) ) ) )
6160exlimdv 1690 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  ( E. x ( z  +Q  x )  =  w  ->  ( ( w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C ) ) ) )
6231, 61syl6d 69 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  C  e.  P. )  /\  ( z  e.  A  /\  -.  ( z  +Q  v )  e.  A
) )  ->  (
w  e.  Q.  ->  ( -.  w  e.  A  ->  ( ( w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
6325, 62rexlimddv 2860 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( w  e.  Q.  ->  ( -.  w  e.  A  ->  ( (
w  +Q  v )  e.  B  ->  w  e.  ( A  +P.  C
) ) ) ) )
6463com14 88 . . . . . . . . . . . . . . 15  |-  ( ( w  +Q  v )  e.  B  ->  (
w  e.  Q.  ->  ( -.  w  e.  A  ->  ( ( A  e. 
P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
6564adantl 466 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( w  e. 
Q.  ->  ( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C ) ) ) ) )
6622, 65mpd 15 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  ( w  +Q  v
)  e.  B )  ->  ( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C ) ) ) )
6766ex 434 . . . . . . . . . . . 12  |-  ( B  e.  P.  ->  (
( w  +Q  v
)  e.  B  -> 
( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
6867exlimdv 1690 . . . . . . . . . . 11  |-  ( B  e.  P.  ->  ( E. v ( w  +Q  v )  e.  B  ->  ( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
6915, 68syld 44 . . . . . . . . . 10  |-  ( B  e.  P.  ->  (
w  e.  B  -> 
( -.  w  e.  A  ->  ( ( A  e.  P.  /\  C  e.  P. )  ->  w  e.  ( A  +P.  C
) ) ) ) )
7069com4t 85 . . . . . . . . 9  |-  ( -.  w  e.  A  -> 
( ( A  e. 
P.  /\  C  e.  P. )  ->  ( B  e.  P.  ->  (
w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
7170expd 436 . . . . . . . 8  |-  ( -.  w  e.  A  -> 
( A  e.  P.  ->  ( C  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
7213, 71pm2.61i 164 . . . . . . 7  |-  ( A  e.  P.  ->  ( C  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
732, 72syl5 32 . . . . . 6  |-  ( A  e.  P.  ->  (
( B  e.  P.  /\  A  C.  B )  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
7473expd 436 . . . . 5  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( A  C.  B  ->  ( B  e.  P.  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
7574com34 83 . . . 4  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( B  e.  P.  ->  ( A  C.  B  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) ) )
7675pm2.43d 48 . . 3  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( A  C.  B  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) ) ) )
7776imp31 432 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( w  e.  B  ->  w  e.  ( A  +P.  C ) ) )
7877ssrdv 3377 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  B  C_  ( A  +P.  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2429   E.wrex 2731    C_ wss 3343    C. wpss 3344   class class class wbr 4307    X. cxp 4853  (class class class)co 6106   Q.cnq 9034    +Q cplq 9037    <Q cltq 9040   P.cnp 9041    +P. cpp 9043    <P cltp 9045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-om 6492  df-1st 6592  df-2nd 6593  df-recs 6847  df-rdg 6881  df-1o 6935  df-oadd 6939  df-omul 6940  df-er 7116  df-ni 9056  df-pli 9057  df-mi 9058  df-lti 9059  df-plpq 9092  df-mpq 9093  df-ltpq 9094  df-enq 9095  df-nq 9096  df-erq 9097  df-plq 9098  df-mq 9099  df-1nq 9100  df-rq 9101  df-ltnq 9102  df-np 9165  df-plp 9167  df-ltp 9169
This theorem is referenced by:  ltexpri  9227
  Copyright terms: Public domain W3C validator