MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem6 Structured version   Unicode version

Theorem ltexprlem6 9408
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  C )  C_  B )
Distinct variable groups:    x, y, A    x, B, y    x, C
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem6
Dummy variables  z  w  v  f  g  h  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . 6  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
21ltexprlem5 9407 . . . . 5  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
3 df-plp 9350 . . . . . 6  |-  +P.  =  ( z  e.  P. ,  y  e.  P.  |->  { f  |  E. g  e.  z  E. h  e.  y  f  =  ( g  +Q  h ) } )
4 addclnq 9312 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
53, 4genpelv 9367 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  ( A  +P.  C )  <->  E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x ) ) )
62, 5sylan2 472 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B )
)  ->  ( z  e.  ( A  +P.  C
)  <->  E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x ) ) )
71abeq2i 2581 . . . . . . . . . . . 12  |-  ( x  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
8 elprnq 9358 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( y  +Q  x )  e.  Q. )
9 addnqf 9315 . . . . . . . . . . . . . . . . . . . . . 22  |-  +Q  :
( Q.  X.  Q. )
--> Q.
109fdmi 5718 . . . . . . . . . . . . . . . . . . . . 21  |-  dom  +Q  =  ( Q.  X.  Q. )
11 0nnq 9291 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  (/)  e.  Q.
1210, 11ndmovrcl 6434 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +Q  x )  e.  Q.  ->  (
y  e.  Q.  /\  x  e.  Q. )
)
1312simpld 457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  +Q  x )  e.  Q.  ->  y  e.  Q. )
148, 13syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  y  e.  Q. )
15 prub 9361 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  y  e.  Q. )  ->  ( -.  y  e.  A  ->  w  <Q  y ) )
1614, 15sylan2 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  ( B  e. 
P.  /\  ( y  +Q  x )  e.  B
) )  ->  ( -.  y  e.  A  ->  w  <Q  y )
)
1712simprd 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +Q  x )  e.  Q.  ->  x  e.  Q. )
18 vex 3109 . . . . . . . . . . . . . . . . . . . . 21  |-  w  e. 
_V
19 vex 3109 . . . . . . . . . . . . . . . . . . . . 21  |-  y  e. 
_V
20 ltanq 9338 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  e.  Q.  ->  (
z  <Q  v  <->  ( u  +Q  z )  <Q  (
u  +Q  v ) ) )
21 vex 3109 . . . . . . . . . . . . . . . . . . . . 21  |-  x  e. 
_V
22 addcomnq 9318 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  +Q  v )  =  ( v  +Q  z
)
2318, 19, 20, 21, 22caovord2 6460 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  Q.  ->  (
w  <Q  y  <->  ( w  +Q  x )  <Q  (
y  +Q  x ) ) )
248, 17, 233syl 20 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( w  <Q  y  <-> 
( w  +Q  x
)  <Q  ( y  +Q  x ) ) )
25 prcdnq 9360 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( ( w  +Q  x )  <Q 
( y  +Q  x
)  ->  ( w  +Q  x )  e.  B
) )
2624, 25sylbid 215 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( w  <Q  y  ->  ( w  +Q  x )  e.  B
) )
2726adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  ( B  e. 
P.  /\  ( y  +Q  x )  e.  B
) )  ->  (
w  <Q  y  ->  (
w  +Q  x )  e.  B ) )
2816, 27syld 44 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  ( B  e. 
P.  /\  ( y  +Q  x )  e.  B
) )  ->  ( -.  y  e.  A  ->  ( w  +Q  x
)  e.  B ) )
2928exp32 603 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  w  e.  A )  ->  ( B  e.  P.  ->  ( ( y  +Q  x )  e.  B  ->  ( -.  y  e.  A  ->  ( w  +Q  x )  e.  B
) ) ) )
3029com34 83 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  w  e.  A )  ->  ( B  e.  P.  ->  ( -.  y  e.  A  ->  ( (
y  +Q  x )  e.  B  ->  (
w  +Q  x )  e.  B ) ) ) )
3130imp4b 588 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  B  e.  P. )  ->  ( ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B )  ->  ( w  +Q  x )  e.  B
) )
3231exlimdv 1729 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  B  e.  P. )  ->  ( E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  ->  (
w  +Q  x )  e.  B ) )
337, 32syl5bi 217 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  B  e.  P. )  ->  ( x  e.  C  ->  ( w  +Q  x )  e.  B
) )
3433exp31 602 . . . . . . . . . 10  |-  ( A  e.  P.  ->  (
w  e.  A  -> 
( B  e.  P.  ->  ( x  e.  C  ->  ( w  +Q  x
)  e.  B ) ) ) )
3534com23 78 . . . . . . . . 9  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  A  -> 
( x  e.  C  ->  ( w  +Q  x
)  e.  B ) ) ) )
3635imp43 593 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( w  e.  A  /\  x  e.  C
) )  ->  (
w  +Q  x )  e.  B )
37 eleq1 2526 . . . . . . . . 9  |-  ( z  =  ( w  +Q  x )  ->  (
z  e.  B  <->  ( w  +Q  x )  e.  B
) )
3837biimparc 485 . . . . . . . 8  |-  ( ( ( w  +Q  x
)  e.  B  /\  z  =  ( w  +Q  x ) )  -> 
z  e.  B )
3936, 38sylan 469 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
w  e.  A  /\  x  e.  C )
)  /\  z  =  ( w  +Q  x
) )  ->  z  e.  B )
4039exp31 602 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( w  e.  A  /\  x  e.  C )  ->  (
z  =  ( w  +Q  x )  -> 
z  e.  B ) ) )
4140rexlimdvv 2952 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x )  ->  z  e.  B
) )
4241adantrr 714 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B )
)  ->  ( E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x )  ->  z  e.  B ) )
436, 42sylbid 215 . . 3  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B )
)  ->  ( z  e.  ( A  +P.  C
)  ->  z  e.  B ) )
4443ssrdv 3495 . 2  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B )
)  ->  ( A  +P.  C )  C_  B
)
4544anassrs 646 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  C )  C_  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   {cab 2439   E.wrex 2805    C_ wss 3461    C. wpss 3462   class class class wbr 4439    X. cxp 4986  (class class class)co 6270   Q.cnq 9219    +Q cplq 9222    <Q cltq 9225   P.cnp 9226    +P. cpp 9228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-omul 7127  df-er 7303  df-ni 9239  df-pli 9240  df-mi 9241  df-lti 9242  df-plpq 9275  df-mpq 9276  df-ltpq 9277  df-enq 9278  df-nq 9279  df-erq 9280  df-plq 9281  df-mq 9282  df-1nq 9283  df-ltnq 9285  df-np 9348  df-plp 9350
This theorem is referenced by:  ltexpri  9410
  Copyright terms: Public domain W3C validator