MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem6 Unicode version

Theorem ltexprlem6 8545
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
Assertion
Ref Expression
ltexprlem6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  C )  C_  B )
Distinct variable groups:    x, y, A    x, B, y    x, C
Allowed substitution hint:    C( y)

Proof of Theorem ltexprlem6
StepHypRef Expression
1 ltexprlem.1 . . . . . 6  |-  C  =  { x  |  E. y ( -.  y  e.  A  /\  (
y  +Q  x )  e.  B ) }
21ltexprlem5 8544 . . . . 5  |-  ( ( B  e.  P.  /\  A  C.  B )  ->  C  e.  P. )
3 df-plp 8487 . . . . . 6  |-  +P.  =  ( z  e.  P. ,  y  e.  P.  |->  { f  |  E. g  e.  z  E. h  e.  y  f  =  ( g  +Q  h ) } )
4 addclnq 8449 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
53, 4genpelv 8504 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( z  e.  ( A  +P.  C )  <->  E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x ) ) )
62, 5sylan2 462 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B ) )  ->  ( z  e.  ( A  +P.  C
)  <->  E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x ) ) )
71abeq2i 2356 . . . . . . . . . . . 12  |-  ( x  e.  C  <->  E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B ) )
8 elprnq 8495 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( y  +Q  x )  e.  Q. )
9 addnqf 8452 . . . . . . . . . . . . . . . . . . . . . 22  |-  +Q  :
( Q.  X.  Q. )
--> Q.
109fdmi 5251 . . . . . . . . . . . . . . . . . . . . 21  |-  dom  +Q  =  ( Q.  X.  Q. )
11 0nnq 8428 . . . . . . . . . . . . . . . . . . . . 21  |-  -.  (/)  e.  Q.
1210, 11ndmovrcl 5858 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +Q  x )  e.  Q.  ->  (
y  e.  Q.  /\  x  e.  Q. )
)
1312simpld 447 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  +Q  x )  e.  Q.  ->  y  e.  Q. )
148, 13syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  y  e.  Q. )
15 prub 8498 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  y  e.  Q. )  ->  ( -.  y  e.  A  ->  w  <Q  y ) )
1614, 15sylan2 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  ( B  e. 
P.  /\  ( y  +Q  x )  e.  B
) )  ->  ( -.  y  e.  A  ->  w  <Q  y )
)
1712simprd 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +Q  x )  e.  Q.  ->  x  e.  Q. )
18 vex 2730 . . . . . . . . . . . . . . . . . . . . 21  |-  w  e. 
_V
19 vex 2730 . . . . . . . . . . . . . . . . . . . . 21  |-  y  e. 
_V
20 ltanq 8475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  e.  Q.  ->  (
z  <Q  v  <->  ( u  +Q  z )  <Q  (
u  +Q  v ) ) )
21 vex 2730 . . . . . . . . . . . . . . . . . . . . 21  |-  x  e. 
_V
22 addcomnq 8455 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  +Q  v )  =  ( v  +Q  z
)
2318, 19, 20, 21, 22caovord2 5884 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  Q.  ->  (
w  <Q  y  <->  ( w  +Q  x )  <Q  (
y  +Q  x ) ) )
248, 17, 233syl 20 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( w  <Q  y  <-> 
( w  +Q  x
)  <Q  ( y  +Q  x ) ) )
25 prcdnq 8497 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( ( w  +Q  x )  <Q 
( y  +Q  x
)  ->  ( w  +Q  x )  e.  B
) )
2624, 25sylbid 208 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  P.  /\  ( y  +Q  x
)  e.  B )  ->  ( w  <Q  y  ->  ( w  +Q  x )  e.  B
) )
2726adantl 454 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  ( B  e. 
P.  /\  ( y  +Q  x )  e.  B
) )  ->  (
w  <Q  y  ->  (
w  +Q  x )  e.  B ) )
2816, 27syld 42 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  ( B  e. 
P.  /\  ( y  +Q  x )  e.  B
) )  ->  ( -.  y  e.  A  ->  ( w  +Q  x
)  e.  B ) )
2928exp32 591 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  w  e.  A )  ->  ( B  e.  P.  ->  ( ( y  +Q  x )  e.  B  ->  ( -.  y  e.  A  ->  ( w  +Q  x )  e.  B
) ) ) )
3029com34 79 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  w  e.  A )  ->  ( B  e.  P.  ->  ( -.  y  e.  A  ->  ( (
y  +Q  x )  e.  B  ->  (
w  +Q  x )  e.  B ) ) ) )
3130imp4b 576 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  B  e.  P. )  ->  ( ( -.  y  e.  A  /\  ( y  +Q  x
)  e.  B )  ->  ( w  +Q  x )  e.  B
) )
3231exlimdv 1932 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  B  e.  P. )  ->  ( E. y
( -.  y  e.  A  /\  ( y  +Q  x )  e.  B )  ->  (
w  +Q  x )  e.  B ) )
337, 32syl5bi 210 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  w  e.  A )  /\  B  e.  P. )  ->  ( x  e.  C  ->  ( w  +Q  x )  e.  B
) )
3433exp31 590 . . . . . . . . . 10  |-  ( A  e.  P.  ->  (
w  e.  A  -> 
( B  e.  P.  ->  ( x  e.  C  ->  ( w  +Q  x
)  e.  B ) ) ) )
3534com23 74 . . . . . . . . 9  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( w  e.  A  -> 
( x  e.  C  ->  ( w  +Q  x
)  e.  B ) ) ) )
3635imp43 581 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( w  e.  A  /\  x  e.  C
) )  ->  (
w  +Q  x )  e.  B )
37 eleq1 2313 . . . . . . . . 9  |-  ( z  =  ( w  +Q  x )  ->  (
z  e.  B  <->  ( w  +Q  x )  e.  B
) )
3837biimparc 475 . . . . . . . 8  |-  ( ( ( w  +Q  x
)  e.  B  /\  z  =  ( w  +Q  x ) )  -> 
z  e.  B )
3936, 38sylan 459 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
w  e.  A  /\  x  e.  C )
)  /\  z  =  ( w  +Q  x
) )  ->  z  e.  B )
4039exp31 590 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( w  e.  A  /\  x  e.  C )  ->  (
z  =  ( w  +Q  x )  -> 
z  e.  B ) ) )
4140rexlimdvv 2635 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x )  ->  z  e.  B
) )
4241adantrr 700 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B ) )  ->  ( E. w  e.  A  E. x  e.  C  z  =  ( w  +Q  x )  ->  z  e.  B ) )
436, 42sylbid 208 . . 3  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B ) )  ->  ( z  e.  ( A  +P.  C
)  ->  z  e.  B ) )
4443ssrdv 3106 . 2  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  A  C.  B ) )  ->  ( A  +P.  C )  C_  B
)
4544anassrs 632 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  A  C.  B )  ->  ( A  +P.  C )  C_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2239   E.wrex 2510    C_ wss 3078    C. wpss 3079   class class class wbr 3920    X. cxp 4578  (class class class)co 5710   Q.cnq 8354    +Q cplq 8357    <Q cltq 8360   P.cnp 8361    +P. cpp 8363
This theorem is referenced by:  ltexpri  8547
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-omul 6370  df-er 6546  df-ni 8376  df-pli 8377  df-mi 8378  df-lti 8379  df-plpq 8412  df-mpq 8413  df-ltpq 8414  df-enq 8415  df-nq 8416  df-erq 8417  df-plq 8418  df-mq 8419  df-1nq 8420  df-ltnq 8422  df-np 8485  df-plp 8487
  Copyright terms: Public domain W3C validator