MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdiv23d Structured version   Unicode version

Theorem ltdiv23d 11315
Description: Swap denominator with other side of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltdiv23d.1  |-  ( ph  ->  A  e.  RR )
ltdiv23d.2  |-  ( ph  ->  B  e.  RR+ )
ltdiv23d.3  |-  ( ph  ->  C  e.  RR+ )
ltdiv23d.4  |-  ( ph  ->  ( A  /  B
)  <  C )
Assertion
Ref Expression
ltdiv23d  |-  ( ph  ->  ( A  /  C
)  <  B )

Proof of Theorem ltdiv23d
StepHypRef Expression
1 ltdiv23d.4 . 2  |-  ( ph  ->  ( A  /  B
)  <  C )
2 ltdiv23d.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltdiv23d.2 . . . 4  |-  ( ph  ->  B  e.  RR+ )
43rpregt0d 11265 . . 3  |-  ( ph  ->  ( B  e.  RR  /\  0  <  B ) )
5 ltdiv23d.3 . . . 4  |-  ( ph  ->  C  e.  RR+ )
65rpregt0d 11265 . . 3  |-  ( ph  ->  ( C  e.  RR  /\  0  <  C ) )
7 ltdiv23 10431 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )
82, 4, 6, 7syl3anc 1226 . 2  |-  ( ph  ->  ( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )
91, 8mpbid 210 1  |-  ( ph  ->  ( A  /  C
)  <  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1823   class class class wbr 4439  (class class class)co 6270   RRcr 9480   0cc0 9481    < clt 9617    / cdiv 10202   RR+crp 11221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-rp 11222
This theorem is referenced by:  pntpbnd1a  23971  pntlemc  23981  smcnlem  25808  binomcxplemnotnn0  31505  0ellimcdiv  31897  sinaover2ne0  31910  fourierdlem30  32161
  Copyright terms: Public domain W3C validator