MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdiv1 Structured version   Unicode version

Theorem ltdiv1 10185
Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltdiv1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )

Proof of Theorem ltdiv1
StepHypRef Expression
1 simp1 988 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A  e.  RR )
2 simp2 989 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  RR )
3 simp3l 1016 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  RR )
4 simp3r 1017 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
0  <  C )
54gt0ne0d 9896 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  =/=  0 )
63, 5rereccld 10150 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( 1  /  C
)  e.  RR )
7 recgt0 10165 . . . 4  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
0  <  ( 1  /  C ) )
873ad2ant3 1011 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
0  <  ( 1  /  C ) )
9 ltmul1 10171 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( 1  /  C
)  e.  RR  /\  0  <  ( 1  /  C ) ) )  ->  ( A  < 
B  <->  ( A  x.  ( 1  /  C
) )  <  ( B  x.  ( 1  /  C ) ) ) )
101, 2, 6, 8, 9syl112anc 1222 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  ( 1  /  C ) )  <  ( B  x.  ( 1  /  C
) ) ) )
111recnd 9404 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A  e.  CC )
123recnd 9404 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  CC )
1311, 12, 5divrecd 10102 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  /  C
)  =  ( A  x.  ( 1  /  C ) ) )
142recnd 9404 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  CC )
1514, 12, 5divrecd 10102 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  /  C
)  =  ( B  x.  ( 1  /  C ) ) )
1613, 15breq12d 4300 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <  ( B  /  C )  <->  ( A  x.  ( 1  /  C
) )  <  ( B  x.  ( 1  /  C ) ) ) )
1710, 16bitr4d 256 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    e. wcel 1756   class class class wbr 4287  (class class class)co 6086   RRcr 9273   0cc0 9274   1c1 9275    x. cmul 9279    < clt 9410    / cdiv 9985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986
This theorem is referenced by:  lediv1  10186  gt0div  10187  ltmuldiv  10194  ltdivmul  10196  ltdiv23  10215  ltdiv1i  10244  ltdiv1d  11060  flltdivnn0lt  11669  quoremz  11686  quoremnn0ALT  11688  fldiv  11691  hashdvds  13842  dvcvx  21467  sinq12gt0  21944  tanord1  21968  atanlogsublem  22285  basellem4  22396  chtub  22526  bposlem7  22604  lgsquadlem1  22668  lgsquadlem2  22669  chebbnd1lem3  22695  cvmliftlem6  27131  cvmliftlem7  27132  cvmliftlem8  27133  cvmliftlem9  27134  cvmliftlem10  27135  nndivsub  28255  tan2h  28377  dvtanlem  28394  nn0prpwlem  28470  reglogltb  29185  hashgcdlem  29518  stoweidlem14  29762  stoweidlem26  29774
  Copyright terms: Public domain W3C validator