MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdiv1 Structured version   Unicode version

Theorem ltdiv1 10402
Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltdiv1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )

Proof of Theorem ltdiv1
StepHypRef Expression
1 simp1 994 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A  e.  RR )
2 simp2 995 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  RR )
3 simp3l 1022 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  RR )
4 simp3r 1023 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
0  <  C )
54gt0ne0d 10113 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  =/=  0 )
63, 5rereccld 10367 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( 1  /  C
)  e.  RR )
7 recgt0 10382 . . . 4  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
0  <  ( 1  /  C ) )
873ad2ant3 1017 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
0  <  ( 1  /  C ) )
9 ltmul1 10388 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( 1  /  C
)  e.  RR  /\  0  <  ( 1  /  C ) ) )  ->  ( A  < 
B  <->  ( A  x.  ( 1  /  C
) )  <  ( B  x.  ( 1  /  C ) ) ) )
101, 2, 6, 8, 9syl112anc 1230 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  ( 1  /  C ) )  <  ( B  x.  ( 1  /  C
) ) ) )
111recnd 9611 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  A  e.  CC )
123recnd 9611 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  CC )
1311, 12, 5divrecd 10319 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  /  C
)  =  ( A  x.  ( 1  /  C ) ) )
142recnd 9611 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  CC )
1514, 12, 5divrecd 10319 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  /  C
)  =  ( B  x.  ( 1  /  C ) ) )
1613, 15breq12d 4452 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <  ( B  /  C )  <->  ( A  x.  ( 1  /  C
) )  <  ( B  x.  ( 1  /  C ) ) ) )
1710, 16bitr4d 256 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    e. wcel 1823   class class class wbr 4439  (class class class)co 6270   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486    < clt 9617    / cdiv 10202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203
This theorem is referenced by:  lediv1  10403  gt0div  10404  ltmuldiv  10411  ltdivmul  10413  ltdiv23  10431  ltdiv1i  10460  ltdiv1d  11300  flltdivnn0lt  11947  quoremz  11964  quoremnn0ALT  11966  fldiv  11969  hashdvds  14389  dvcvx  22587  sinq12gt0  23066  tanord1  23090  atanlogsublem  23443  basellem4  23555  chtub  23685  bposlem7  23763  lgsquadlem1  23827  lgsquadlem2  23828  chebbnd1lem3  23854  cvmliftlem6  28999  cvmliftlem7  29000  cvmliftlem8  29001  cvmliftlem9  29002  cvmliftlem10  29003  nndivsub  30150  tan2h  30287  dvtanlem  30304  nn0prpwlem  30380  reglogltb  31066  hashgcdlem  31398  stoweidlem14  32035  stoweidlem26  32047
  Copyright terms: Public domain W3C validator