MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbtwnnq Structured version   Unicode version

Theorem ltbtwnnq 9267
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltbtwnnq  |-  ( A 
<Q  B  <->  E. x ( A 
<Q  x  /\  x  <Q  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem ltbtwnnq
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 9215 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4962 . . . 4  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
32simprd 461 . . 3  |-  ( A 
<Q  B  ->  B  e. 
Q. )
4 ltexnq 9264 . . . 4  |-  ( B  e.  Q.  ->  ( A  <Q  B  <->  E. y
( A  +Q  y
)  =  B ) )
5 eleq1 2454 . . . . . . . . . 10  |-  ( ( A  +Q  y )  =  B  ->  (
( A  +Q  y
)  e.  Q.  <->  B  e.  Q. ) )
65biimparc 485 . . . . . . . . 9  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( A  +Q  y )  e.  Q. )
7 addnqf 9237 . . . . . . . . . . 11  |-  +Q  :
( Q.  X.  Q. )
--> Q.
87fdmi 5644 . . . . . . . . . 10  |-  dom  +Q  =  ( Q.  X.  Q. )
9 0nnq 9213 . . . . . . . . . 10  |-  -.  (/)  e.  Q.
108, 9ndmovrcl 6360 . . . . . . . . 9  |-  ( ( A  +Q  y )  e.  Q.  ->  ( A  e.  Q.  /\  y  e.  Q. ) )
116, 10syl 16 . . . . . . . 8  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( A  e. 
Q.  /\  y  e.  Q. ) )
1211simprd 461 . . . . . . 7  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  y  e.  Q. )
13 nsmallnq 9266 . . . . . . . 8  |-  ( y  e.  Q.  ->  E. z 
z  <Q  y )
1411simpld 457 . . . . . . . . . . . 12  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  A  e.  Q. )
151brel 4962 . . . . . . . . . . . . 13  |-  ( z 
<Q  y  ->  ( z  e.  Q.  /\  y  e.  Q. ) )
1615simpld 457 . . . . . . . . . . . 12  |-  ( z 
<Q  y  ->  z  e. 
Q. )
17 ltaddnq 9263 . . . . . . . . . . . 12  |-  ( ( A  e.  Q.  /\  z  e.  Q. )  ->  A  <Q  ( A  +Q  z ) )
1814, 16, 17syl2an 475 . . . . . . . . . . 11  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  A  <Q  ( A  +Q  z ) )
19 ltanq 9260 . . . . . . . . . . . . . 14  |-  ( A  e.  Q.  ->  (
z  <Q  y  <->  ( A  +Q  z )  <Q  ( A  +Q  y ) ) )
2019biimpa 482 . . . . . . . . . . . . 13  |-  ( ( A  e.  Q.  /\  z  <Q  y )  -> 
( A  +Q  z
)  <Q  ( A  +Q  y ) )
2114, 20sylan 469 . . . . . . . . . . . 12  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  ( A  +Q  z )  <Q  ( A  +Q  y ) )
22 simplr 753 . . . . . . . . . . . 12  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  ( A  +Q  y )  =  B )
2321, 22breqtrd 4391 . . . . . . . . . . 11  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  ( A  +Q  z )  <Q  B )
24 ovex 6224 . . . . . . . . . . . 12  |-  ( A  +Q  z )  e. 
_V
25 breq2 4371 . . . . . . . . . . . . 13  |-  ( x  =  ( A  +Q  z )  ->  ( A  <Q  x  <->  A  <Q  ( A  +Q  z ) ) )
26 breq1 4370 . . . . . . . . . . . . 13  |-  ( x  =  ( A  +Q  z )  ->  (
x  <Q  B  <->  ( A  +Q  z )  <Q  B ) )
2725, 26anbi12d 708 . . . . . . . . . . . 12  |-  ( x  =  ( A  +Q  z )  ->  (
( A  <Q  x  /\  x  <Q  B )  <-> 
( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z
)  <Q  B ) ) )
2824, 27spcev 3126 . . . . . . . . . . 11  |-  ( ( A  <Q  ( A  +Q  z )  /\  ( A  +Q  z )  <Q  B )  ->  E. x
( A  <Q  x  /\  x  <Q  B ) )
2918, 23, 28syl2anc 659 . . . . . . . . . 10  |-  ( ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  /\  z  <Q  y
)  ->  E. x
( A  <Q  x  /\  x  <Q  B ) )
3029ex 432 . . . . . . . . 9  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( z  <Q 
y  ->  E. x
( A  <Q  x  /\  x  <Q  B ) ) )
3130exlimdv 1732 . . . . . . . 8  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( E. z 
z  <Q  y  ->  E. x
( A  <Q  x  /\  x  <Q  B ) ) )
3213, 31syl5 32 . . . . . . 7  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  ( y  e. 
Q.  ->  E. x ( A 
<Q  x  /\  x  <Q  B ) ) )
3312, 32mpd 15 . . . . . 6  |-  ( ( B  e.  Q.  /\  ( A  +Q  y
)  =  B )  ->  E. x ( A 
<Q  x  /\  x  <Q  B ) )
3433ex 432 . . . . 5  |-  ( B  e.  Q.  ->  (
( A  +Q  y
)  =  B  ->  E. x ( A  <Q  x  /\  x  <Q  B ) ) )
3534exlimdv 1732 . . . 4  |-  ( B  e.  Q.  ->  ( E. y ( A  +Q  y )  =  B  ->  E. x ( A 
<Q  x  /\  x  <Q  B ) ) )
364, 35sylbid 215 . . 3  |-  ( B  e.  Q.  ->  ( A  <Q  B  ->  E. x
( A  <Q  x  /\  x  <Q  B ) ) )
373, 36mpcom 36 . 2  |-  ( A 
<Q  B  ->  E. x
( A  <Q  x  /\  x  <Q  B ) )
38 ltsonq 9258 . . . 4  |-  <Q  Or  Q.
3938, 1sotri 5307 . . 3  |-  ( ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
4039exlimiv 1730 . 2  |-  ( E. x ( A  <Q  x  /\  x  <Q  B )  ->  A  <Q  B )
4137, 40impbii 188 1  |-  ( A 
<Q  B  <->  E. x ( A 
<Q  x  /\  x  <Q  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1399   E.wex 1620    e. wcel 1826   class class class wbr 4367    X. cxp 4911  (class class class)co 6196   Q.cnq 9141    +Q cplq 9144    <Q cltq 9147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-omul 7053  df-er 7229  df-ni 9161  df-pli 9162  df-mi 9163  df-lti 9164  df-plpq 9197  df-mpq 9198  df-ltpq 9199  df-enq 9200  df-nq 9201  df-erq 9202  df-plq 9203  df-mq 9204  df-1nq 9205  df-rq 9206  df-ltnq 9207
This theorem is referenced by:  nqpr  9303  reclem2pr  9337
  Copyright terms: Public domain W3C validator