MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltanq Structured version   Unicode version

Theorem ltanq 9140
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltanq  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )

Proof of Theorem ltanq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addnqf 9117 . . 3  |-  +Q  :
( Q.  X.  Q. )
--> Q.
21fdmi 5564 . 2  |-  dom  +Q  =  ( Q.  X.  Q. )
3 ltrelnq 9095 . 2  |-  <Q  C_  ( Q.  X.  Q. )
4 0nnq 9093 . 2  |-  -.  (/)  e.  Q.
5 ordpinq 9112 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
653adant3 1008 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
7 elpqn 9094 . . . . . . 7  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
873ad2ant3 1011 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
9 elpqn 9094 . . . . . . 7  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
1093ad2ant1 1009 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
11 addpipq2 9105 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  ( C  +pQ  A )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) >. )
128, 10, 11syl2anc 661 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +pQ  A )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) >. )
13 elpqn 9094 . . . . . . 7  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
14133ad2ant2 1010 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
15 addpipq2 9105 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( C  +pQ  B )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B
) ) >. )
168, 14, 15syl2anc 661 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +pQ  B )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B
) ) >. )
1712, 16breq12d 4305 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  +pQ  A
)  <pQ  ( C  +pQ  B )  <->  <. ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  +N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A ) )
>.  <pQ  <. ( ( ( 1st `  C )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. ) )
18 addpqnq 9107 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  +Q  A
)  =  ( /Q
`  ( C  +pQ  A ) ) )
1918ancoms 453 . . . . . . 7  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  A
)  =  ( /Q
`  ( C  +pQ  A ) ) )
20193adant2 1007 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  A )  =  ( /Q `  ( C  +pQ  A ) ) )
21 addpqnq 9107 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  +Q  B
)  =  ( /Q
`  ( C  +pQ  B ) ) )
2221ancoms 453 . . . . . . 7  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  B
)  =  ( /Q
`  ( C  +pQ  B ) ) )
23223adant1 1006 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  B )  =  ( /Q `  ( C  +pQ  B ) ) )
2420, 23breq12d 4305 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  +Q  A
)  <Q  ( C  +Q  B )  <->  ( /Q `  ( C  +pQ  A
) )  <Q  ( /Q `  ( C  +pQ  B ) ) ) )
25 lterpq 9139 . . . . 5  |-  ( ( C  +pQ  A ) 
<pQ  ( C  +pQ  B
)  <->  ( /Q `  ( C  +pQ  A ) )  <Q  ( /Q `  ( C  +pQ  B
) ) )
2624, 25syl6bbr 263 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  +Q  A
)  <Q  ( C  +Q  B )  <->  ( C  +pQ  A )  <pQ  ( C 
+pQ  B ) ) )
27 xp2nd 6607 . . . . . . . . . 10  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
288, 27syl 16 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
29 mulclpi 9062 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
3028, 28, 29syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
31 ltmpi 9073 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N.  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
3230, 31syl 16 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
33 xp2nd 6607 . . . . . . . . . . 11  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
3414, 33syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  B )  e. 
N. )
35 mulclpi 9062 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
3628, 34, 35syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
37 xp1st 6606 . . . . . . . . . . 11  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
388, 37syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
39 xp2nd 6607 . . . . . . . . . . 11  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
4010, 39syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  A )  e. 
N. )
41 mulclpi 9062 . . . . . . . . . 10  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  A ) )  e. 
N. )
4238, 40, 41syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  C
)  .N  ( 2nd `  A ) )  e. 
N. )
43 mulclpi 9062 . . . . . . . . 9  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  e. 
N.  /\  ( ( 1st `  C )  .N  ( 2nd `  A
) )  e.  N. )  ->  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N. )
4436, 42, 43syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N. )
45 ltapi 9072 . . . . . . . 8  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N.  ->  (
( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  <N  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) ) )
4644, 45syl 16 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  <N  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) ) )
4732, 46bitrd 253 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) ) )
48 mulcompi 9065 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  C ) ) )
49 fvex 5701 . . . . . . . . . . 11  |-  ( 1st `  A )  e.  _V
50 fvex 5701 . . . . . . . . . . 11  |-  ( 2nd `  B )  e.  _V
51 fvex 5701 . . . . . . . . . . 11  |-  ( 2nd `  C )  e.  _V
52 mulcompi 9065 . . . . . . . . . . 11  |-  ( x  .N  y )  =  ( y  .N  x
)
53 mulasspi 9066 . . . . . . . . . . 11  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
5449, 50, 51, 52, 53, 51caov411 6295 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) )
5548, 54eqtri 2463 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) )
5655oveq2i 6102 . . . . . . . 8  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) ) )
57 distrpi 9067 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 2nd `  C )  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) ) )
58 mulcompi 9065 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B
) ) )
5956, 57, 583eqtr2i 2469 . . . . . . 7  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )
60 mulcompi 9065 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) )
61 fvex 5701 . . . . . . . . . . 11  |-  ( 1st `  C )  e.  _V
62 fvex 5701 . . . . . . . . . . 11  |-  ( 2nd `  A )  e.  _V
6361, 62, 51, 52, 53, 50caov411 6295 . . . . . . . . . 10  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )
6460, 63eqtri 2463 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )
65 mulcompi 9065 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  B )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  C ) ) )
66 fvex 5701 . . . . . . . . . . 11  |-  ( 1st `  B )  e.  _V
6766, 62, 51, 52, 53, 51caov411 6295 . . . . . . . . . 10  |-  ( ( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
6865, 67eqtri 2463 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
6964, 68oveq12i 6103 . . . . . . . 8  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) )
70 distrpi 9067 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 2nd `  C )  .N  ( 2nd `  A ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) ) )
71 mulcompi 9065 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) )
7269, 70, 713eqtr2i 2469 . . . . . . 7  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) )
7359, 72breq12i 4301 . . . . . 6  |-  ( ( ( ( ( 2nd `  C )  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  <->  ( ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )  <N  ( (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
7447, 73syl6bb 261 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )  <N  ( (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) ) )
75 ordpipq 9111 . . . . 5  |-  ( <.
( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) >.  <pQ  <. (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. 
<->  ( ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  +N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )  <N  ( (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
7674, 75syl6bbr 263 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  <. ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A ) )
>.  <pQ  <. ( ( ( 1st `  C )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. ) )
7717, 26, 763bitr4rd 286 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
786, 77bitrd 253 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
792, 3, 4, 78ndmovord 6253 1  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1369    e. wcel 1756   <.cop 3883   class class class wbr 4292    X. cxp 4838   ` cfv 5418  (class class class)co 6091   1stc1st 6575   2ndc2nd 6576   N.cnpi 9011    +N cpli 9012    .N cmi 9013    <N clti 9014    +pQ cplpq 9015    <pQ cltpq 9017   Q.cnq 9019   /Qcerq 9021    +Q cplq 9022    <Q cltq 9025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-omul 6925  df-er 7101  df-ni 9041  df-pli 9042  df-mi 9043  df-lti 9044  df-plpq 9077  df-ltpq 9079  df-enq 9080  df-nq 9081  df-erq 9082  df-plq 9083  df-1nq 9085  df-ltnq 9087
This theorem is referenced by:  ltaddnq  9143  ltbtwnnq  9147  addclpr  9187  distrlem4pr  9195  ltexprlem3  9207  ltexprlem4  9208  ltexprlem6  9210  prlem936  9216
  Copyright terms: Public domain W3C validator