MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltanq Structured version   Unicode version

Theorem ltanq 9366
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltanq  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )

Proof of Theorem ltanq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addnqf 9343 . . 3  |-  +Q  :
( Q.  X.  Q. )
--> Q.
21fdmi 5742 . 2  |-  dom  +Q  =  ( Q.  X.  Q. )
3 ltrelnq 9321 . 2  |-  <Q  C_  ( Q.  X.  Q. )
4 0nnq 9319 . 2  |-  -.  (/)  e.  Q.
5 ordpinq 9338 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
653adant3 1016 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
7 elpqn 9320 . . . . . . 7  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
873ad2ant3 1019 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
9 elpqn 9320 . . . . . . 7  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
1093ad2ant1 1017 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
11 addpipq2 9331 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  ( C  +pQ  A )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) >. )
128, 10, 11syl2anc 661 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +pQ  A )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) >. )
13 elpqn 9320 . . . . . . 7  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
14133ad2ant2 1018 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
15 addpipq2 9331 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( C  +pQ  B )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B
) ) >. )
168, 14, 15syl2anc 661 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +pQ  B )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B
) ) >. )
1712, 16breq12d 4469 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  +pQ  A
)  <pQ  ( C  +pQ  B )  <->  <. ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  +N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A ) )
>.  <pQ  <. ( ( ( 1st `  C )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. ) )
18 addpqnq 9333 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  +Q  A
)  =  ( /Q
`  ( C  +pQ  A ) ) )
1918ancoms 453 . . . . . . 7  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  A
)  =  ( /Q
`  ( C  +pQ  A ) ) )
20193adant2 1015 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  A )  =  ( /Q `  ( C  +pQ  A ) ) )
21 addpqnq 9333 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  +Q  B
)  =  ( /Q
`  ( C  +pQ  B ) ) )
2221ancoms 453 . . . . . . 7  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  B
)  =  ( /Q
`  ( C  +pQ  B ) ) )
23223adant1 1014 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  B )  =  ( /Q `  ( C  +pQ  B ) ) )
2420, 23breq12d 4469 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  +Q  A
)  <Q  ( C  +Q  B )  <->  ( /Q `  ( C  +pQ  A
) )  <Q  ( /Q `  ( C  +pQ  B ) ) ) )
25 lterpq 9365 . . . . 5  |-  ( ( C  +pQ  A ) 
<pQ  ( C  +pQ  B
)  <->  ( /Q `  ( C  +pQ  A ) )  <Q  ( /Q `  ( C  +pQ  B
) ) )
2624, 25syl6bbr 263 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  +Q  A
)  <Q  ( C  +Q  B )  <->  ( C  +pQ  A )  <pQ  ( C 
+pQ  B ) ) )
27 xp2nd 6830 . . . . . . . . . 10  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
288, 27syl 16 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
29 mulclpi 9288 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
3028, 28, 29syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
31 ltmpi 9299 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N.  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
3230, 31syl 16 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
33 xp2nd 6830 . . . . . . . . . . 11  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
3414, 33syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  B )  e. 
N. )
35 mulclpi 9288 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
3628, 34, 35syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
37 xp1st 6829 . . . . . . . . . . 11  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
388, 37syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
39 xp2nd 6830 . . . . . . . . . . 11  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
4010, 39syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  A )  e. 
N. )
41 mulclpi 9288 . . . . . . . . . 10  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  A ) )  e. 
N. )
4238, 40, 41syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  C
)  .N  ( 2nd `  A ) )  e. 
N. )
43 mulclpi 9288 . . . . . . . . 9  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  e. 
N.  /\  ( ( 1st `  C )  .N  ( 2nd `  A
) )  e.  N. )  ->  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N. )
4436, 42, 43syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N. )
45 ltapi 9298 . . . . . . . 8  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N.  ->  (
( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  <N  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) ) )
4644, 45syl 16 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  <N  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) ) )
4732, 46bitrd 253 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) ) )
48 mulcompi 9291 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  C ) ) )
49 fvex 5882 . . . . . . . . . . 11  |-  ( 1st `  A )  e.  _V
50 fvex 5882 . . . . . . . . . . 11  |-  ( 2nd `  B )  e.  _V
51 fvex 5882 . . . . . . . . . . 11  |-  ( 2nd `  C )  e.  _V
52 mulcompi 9291 . . . . . . . . . . 11  |-  ( x  .N  y )  =  ( y  .N  x
)
53 mulasspi 9292 . . . . . . . . . . 11  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
5449, 50, 51, 52, 53, 51caov411 6506 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) )
5548, 54eqtri 2486 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) )
5655oveq2i 6307 . . . . . . . 8  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) ) )
57 distrpi 9293 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 2nd `  C )  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) ) )
58 mulcompi 9291 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B
) ) )
5956, 57, 583eqtr2i 2492 . . . . . . 7  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )
60 mulcompi 9291 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) )
61 fvex 5882 . . . . . . . . . . 11  |-  ( 1st `  C )  e.  _V
62 fvex 5882 . . . . . . . . . . 11  |-  ( 2nd `  A )  e.  _V
6361, 62, 51, 52, 53, 50caov411 6506 . . . . . . . . . 10  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )
6460, 63eqtri 2486 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )
65 mulcompi 9291 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  B )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  C ) ) )
66 fvex 5882 . . . . . . . . . . 11  |-  ( 1st `  B )  e.  _V
6766, 62, 51, 52, 53, 51caov411 6506 . . . . . . . . . 10  |-  ( ( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
6865, 67eqtri 2486 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
6964, 68oveq12i 6308 . . . . . . . 8  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) )
70 distrpi 9293 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 2nd `  C )  .N  ( 2nd `  A ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) ) )
71 mulcompi 9291 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) )
7269, 70, 713eqtr2i 2492 . . . . . . 7  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) )
7359, 72breq12i 4465 . . . . . 6  |-  ( ( ( ( ( 2nd `  C )  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  <->  ( ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )  <N  ( (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
7447, 73syl6bb 261 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )  <N  ( (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) ) )
75 ordpipq 9337 . . . . 5  |-  ( <.
( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) >.  <pQ  <. (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. 
<->  ( ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  +N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )  <N  ( (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
7674, 75syl6bbr 263 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  <. ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A ) )
>.  <pQ  <. ( ( ( 1st `  C )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. ) )
7717, 26, 763bitr4rd 286 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
786, 77bitrd 253 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
792, 3, 4, 78ndmovord 6464 1  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973    = wceq 1395    e. wcel 1819   <.cop 4038   class class class wbr 4456    X. cxp 5006   ` cfv 5594  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   N.cnpi 9239    +N cpli 9240    .N cmi 9241    <N clti 9242    +pQ cplpq 9243    <pQ cltpq 9245   Q.cnq 9247   /Qcerq 9249    +Q cplq 9250    <Q cltq 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-omul 7153  df-er 7329  df-ni 9267  df-pli 9268  df-mi 9269  df-lti 9270  df-plpq 9303  df-ltpq 9305  df-enq 9306  df-nq 9307  df-erq 9308  df-plq 9309  df-1nq 9311  df-ltnq 9313
This theorem is referenced by:  ltaddnq  9369  ltbtwnnq  9373  addclpr  9413  distrlem4pr  9421  ltexprlem3  9433  ltexprlem4  9434  ltexprlem6  9436  prlem936  9442
  Copyright terms: Public domain W3C validator