MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltanq Unicode version

Theorem ltanq 8804
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltanq  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )

Proof of Theorem ltanq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addnqf 8781 . . 3  |-  +Q  :
( Q.  X.  Q. )
--> Q.
21fdmi 5555 . 2  |-  dom  +Q  =  ( Q.  X.  Q. )
3 ltrelnq 8759 . 2  |-  <Q  C_  ( Q.  X.  Q. )
4 0nnq 8757 . 2  |-  -.  (/)  e.  Q.
5 ordpinq 8776 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
653adant3 977 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
7 elpqn 8758 . . . . . . 7  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
873ad2ant3 980 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
9 elpqn 8758 . . . . . . 7  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
1093ad2ant1 978 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
11 addpipq2 8769 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  ( C  +pQ  A )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) >. )
128, 10, 11syl2anc 643 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +pQ  A )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) >. )
13 elpqn 8758 . . . . . . 7  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
14133ad2ant2 979 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
15 addpipq2 8769 . . . . . 6  |-  ( ( C  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( C  +pQ  B )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B
) ) >. )
168, 14, 15syl2anc 643 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +pQ  B )  = 
<. ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B
) ) >. )
1712, 16breq12d 4185 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  +pQ  A
)  <pQ  ( C  +pQ  B )  <->  <. ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  +N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A ) )
>.  <pQ  <. ( ( ( 1st `  C )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. ) )
18 addpqnq 8771 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  A  e.  Q. )  ->  ( C  +Q  A
)  =  ( /Q
`  ( C  +pQ  A ) ) )
1918ancoms 440 . . . . . . 7  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  A
)  =  ( /Q
`  ( C  +pQ  A ) ) )
20193adant2 976 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  A )  =  ( /Q `  ( C  +pQ  A ) ) )
21 addpqnq 8771 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  B  e.  Q. )  ->  ( C  +Q  B
)  =  ( /Q
`  ( C  +pQ  B ) ) )
2221ancoms 440 . . . . . . 7  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  B
)  =  ( /Q
`  ( C  +pQ  B ) ) )
23223adant1 975 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( C  +Q  B )  =  ( /Q `  ( C  +pQ  B ) ) )
2420, 23breq12d 4185 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  +Q  A
)  <Q  ( C  +Q  B )  <->  ( /Q `  ( C  +pQ  A
) )  <Q  ( /Q `  ( C  +pQ  B ) ) ) )
25 lterpq 8803 . . . . 5  |-  ( ( C  +pQ  A ) 
<pQ  ( C  +pQ  B
)  <->  ( /Q `  ( C  +pQ  A ) )  <Q  ( /Q `  ( C  +pQ  B
) ) )
2624, 25syl6bbr 255 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( C  +Q  A
)  <Q  ( C  +Q  B )  <->  ( C  +pQ  A )  <pQ  ( C 
+pQ  B ) ) )
27 xp2nd 6336 . . . . . . . . . 10  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
288, 27syl 16 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
29 mulclpi 8726 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
3028, 28, 29syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N. )
31 ltmpi 8737 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  e. 
N.  ->  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
3230, 31syl 16 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) 
<N  ( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  A ) ) ) ) )
33 xp2nd 6336 . . . . . . . . . . 11  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
3414, 33syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  B )  e. 
N. )
35 mulclpi 8726 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
3628, 34, 35syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
37 xp1st 6335 . . . . . . . . . . 11  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
388, 37syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
39 xp2nd 6336 . . . . . . . . . . 11  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
4010, 39syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  A )  e. 
N. )
41 mulclpi 8726 . . . . . . . . . 10  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  A ) )  e. 
N. )
4238, 40, 41syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  C
)  .N  ( 2nd `  A ) )  e. 
N. )
43 mulclpi 8726 . . . . . . . . 9  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  e. 
N.  /\  ( ( 1st `  C )  .N  ( 2nd `  A
) )  e.  N. )  ->  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N. )
4436, 42, 43syl2anc 643 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N. )
45 ltapi 8736 . . . . . . . 8  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  e.  N.  ->  (
( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  <N  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) ) )
4644, 45syl 16 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( ( 2nd `  C )  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A )  .N  ( 2nd `  B ) ) )  <N  ( (
( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  <-> 
( ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) ) )
4732, 46bitrd 245 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) ) ) )
48 mulcompi 8729 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  A )  .N  ( 2nd `  B
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  C ) ) )
49 fvex 5701 . . . . . . . . . . 11  |-  ( 1st `  A )  e.  _V
50 fvex 5701 . . . . . . . . . . 11  |-  ( 2nd `  B )  e.  _V
51 fvex 5701 . . . . . . . . . . 11  |-  ( 2nd `  C )  e.  _V
52 mulcompi 8729 . . . . . . . . . . 11  |-  ( x  .N  y )  =  ( y  .N  x
)
53 mulasspi 8730 . . . . . . . . . . 11  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
5449, 50, 51, 52, 53, 51caov411 6238 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) )
5548, 54eqtri 2424 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) )
5655oveq2i 6051 . . . . . . . 8  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  B
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) ) )
57 distrpi 8731 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 2nd `  C )  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) ) )
58 mulcompi 8729 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B
) ) )
5956, 57, 583eqtr2i 2430 . . . . . . 7  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )
60 mulcompi 8729 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  B ) ) )
61 fvex 5701 . . . . . . . . . . 11  |-  ( 1st `  C )  e.  _V
62 fvex 5701 . . . . . . . . . . 11  |-  ( 2nd `  A )  e.  _V
6361, 62, 51, 52, 53, 50caov411 6238 . . . . . . . . . 10  |-  ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )
6460, 63eqtri 2424 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )
65 mulcompi 8729 . . . . . . . . . 10  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 1st `  B )  .N  ( 2nd `  A
) )  .N  (
( 2nd `  C
)  .N  ( 2nd `  C ) ) )
66 fvex 5701 . . . . . . . . . . 11  |-  ( 1st `  B )  e.  _V
6766, 62, 51, 52, 53, 51caov411 6238 . . . . . . . . . 10  |-  ( ( ( 1st `  B
)  .N  ( 2nd `  A ) )  .N  ( ( 2nd `  C
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
6865, 67eqtri 2424 . . . . . . . . 9  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  A ) ) )  =  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
6964, 68oveq12i 6052 . . . . . . . 8  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) )
70 distrpi 8731 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 2nd `  C )  .N  ( 2nd `  A ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) ) )
71 mulcompi 8729 . . . . . . . 8  |-  ( ( ( 2nd `  C
)  .N  ( 2nd `  A ) )  .N  ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) ) )  =  ( ( ( ( 1st `  C )  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) )
7269, 70, 713eqtr2i 2430 . . . . . . 7  |-  ( ( ( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  =  ( ( ( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) )
7359, 72breq12i 4181 . . . . . 6  |-  ( ( ( ( ( 2nd `  C )  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C )  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C
)  .N  ( 2nd `  C ) )  .N  ( ( 1st `  A
)  .N  ( 2nd `  B ) ) ) )  <N  ( (
( ( 2nd `  C
)  .N  ( 2nd `  B ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  A ) ) )  +N  ( ( ( 2nd `  C )  .N  ( 2nd `  C
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )  <->  ( ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )  <N  ( (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
7447, 73syl6bb 253 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( (
( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )  <N  ( (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) ) )
75 ordpipq 8775 . . . . 5  |-  ( <.
( ( ( 1st `  C )  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A )  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A
) ) >.  <pQ  <. (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. 
<->  ( ( ( ( 1st `  C )  .N  ( 2nd `  A
) )  +N  (
( 1st `  A
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  B ) ) )  <N  ( (
( ( 1st `  C
)  .N  ( 2nd `  B ) )  +N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  .N  ( ( 2nd `  C )  .N  ( 2nd `  A ) ) ) )
7674, 75syl6bbr 255 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  <. ( ( ( 1st `  C
)  .N  ( 2nd `  A ) )  +N  ( ( 1st `  A
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  A ) )
>.  <pQ  <. ( ( ( 1st `  C )  .N  ( 2nd `  B
) )  +N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) ) ,  ( ( 2nd `  C )  .N  ( 2nd `  B ) )
>. ) )
7717, 26, 763bitr4rd 278 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) )  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
786, 77bitrd 245 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
792, 3, 4, 78ndmovord 6196 1  |-  ( C  e.  Q.  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   <.cop 3777   class class class wbr 4172    X. cxp 4835   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307   N.cnpi 8675    +N cpli 8676    .N cmi 8677    <N clti 8678    +pQ cplpq 8679    <pQ cltpq 8681   Q.cnq 8683   /Qcerq 8685    +Q cplq 8686    <Q cltq 8689
This theorem is referenced by:  ltaddnq  8807  ltbtwnnq  8811  addclpr  8851  distrlem4pr  8859  ltexprlem3  8871  ltexprlem4  8872  ltexprlem6  8874  prlem936  8880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ni 8705  df-pli 8706  df-mi 8707  df-lti 8708  df-plpq 8741  df-ltpq 8743  df-enq 8744  df-nq 8745  df-erq 8746  df-plq 8747  df-1nq 8749  df-ltnq 8751
  Copyright terms: Public domain W3C validator