MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddsubd Structured version   Unicode version

Theorem ltaddsubd 10051
Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
Assertion
Ref Expression
ltaddsubd  |-  ( ph  ->  ( ( A  +  B )  <  C  <->  A  <  ( C  -  B ) ) )

Proof of Theorem ltaddsubd
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltnegd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 ltadd1d.3 . 2  |-  ( ph  ->  C  e.  RR )
4 ltaddsub 9925 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  B
)  <  C  <->  A  <  ( C  -  B ) ) )
51, 2, 3, 4syl3anc 1219 1  |-  ( ph  ->  ( ( A  +  B )  <  C  <->  A  <  ( C  -  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    e. wcel 1758   class class class wbr 4401  (class class class)co 6201   RRcr 9393    + caddc 9397    < clt 9530    - cmin 9707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-po 4750  df-so 4751  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710
This theorem is referenced by:  elfzodifsumelfzo  11722  elfzomelpfzo  11747  dfceil2  11798  modltm1p1mod  11869  modaddmodlo  11881  discr  12119  swrdccatin1  12493  swrdccatin12lem3  12500  repswswrd  12541  ovolshftlem1  21125  dvcvx  21626  efif1olem2  22133  logcnlem4  22224  ang180lem2  22340  ftalem5  22548  mersenne  22700  perfectlem2  22703  lgseisen  22826  pntlemr  22985  itg2addnclem2  28593  rmspecsqrnq  29396  jm2.24nn  29451  stoweidlem42  29986  stoweidlem60  30004  elfzom1p1elfzo  30364  elfzom1elp1fzo  30367  zm1nn  30617  numclwwlkovf2ex  30828
  Copyright terms: Public domain W3C validator