MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddsubd Structured version   Unicode version

Theorem ltaddsubd 10153
Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
Assertion
Ref Expression
ltaddsubd  |-  ( ph  ->  ( ( A  +  B )  <  C  <->  A  <  ( C  -  B ) ) )

Proof of Theorem ltaddsubd
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltnegd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 ltadd1d.3 . 2  |-  ( ph  ->  C  e.  RR )
4 ltaddsub 10027 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  B
)  <  C  <->  A  <  ( C  -  B ) ) )
51, 2, 3, 4syl3anc 1228 1  |-  ( ph  ->  ( ( A  +  B )  <  C  <->  A  <  ( C  -  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    e. wcel 1767   class class class wbr 4447  (class class class)co 6285   RRcr 9492    + caddc 9496    < clt 9629    - cmin 9806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809
This theorem is referenced by:  elfzodifsumelfzo  11851  elfzom1p1elfzo  11864  elfzomelpfzo  11883  dfceil2  11937  modltm1p1mod  12008  modaddmodlo  12020  discr  12272  swrdccatin1  12674  swrdccatin12lem3  12681  repswswrd  12722  ovolshftlem1  21747  dvcvx  22248  efif1olem2  22755  logcnlem4  22851  ang180lem2  22967  ftalem5  23175  mersenne  23327  perfectlem2  23330  lgseisen  23453  pntlemr  23612  numclwwlkovf2ex  24860  itg2addnclem2  29920  rmspecsqrtnq  30673  jm2.24nn  30728  stoweidlem42  31569  stoweidlem60  31587  fourierdlem41  31675  fourierdlem97  31731  zm1nn  32019
  Copyright terms: Public domain W3C validator