MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddrp Structured version   Unicode version

Theorem ltaddrp 11023
Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
Assertion
Ref Expression
ltaddrp  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  A  <  ( A  +  B ) )

Proof of Theorem ltaddrp
StepHypRef Expression
1 elrp 10993 . 2  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
2 ltaddpos 9829 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <  B  <->  A  <  ( A  +  B ) ) )
32biimpd 207 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <  B  ->  A  <  ( A  +  B ) ) )
43expcom 435 . . 3  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( 0  <  B  ->  A  <  ( A  +  B ) ) ) )
54imp32 433 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  A  <  ( A  +  B ) )
61, 5sylan2b 475 1  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  A  <  ( A  +  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1756   class class class wbr 4292  (class class class)co 6091   RRcr 9281   0cc0 9282    + caddc 9285    < clt 9418   RR+crp 10991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-po 4641  df-so 4642  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-ltxr 9423  df-rp 10992
This theorem is referenced by:  ltaddrpd  11056  efgt1  13400  efgsfo  16236  efgredlemd  16241  efgredlem  16244  iccntr  20398  reconnlem2  20404  opnreen  20408  minveclem3b  20915  logimul  22063  emcllem2  22390  emcllem4  22392  emcllem6  22394  perfectlem2  22569  bclbnd  22619  pntibndlem1  22838  pntlemd  22843  pntlemc  22844  pntlemr  22851  pntlemp  22859  smcnlem  24092  ballotlem2  26871  stoweidlem59  29854
  Copyright terms: Public domain W3C validator