MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddpr Unicode version

Theorem ltaddpr 8867
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )

Proof of Theorem ltaddpr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 8822 . . . . 5  |-  ( B  e.  P.  ->  B  =/=  (/) )
2 n0 3597 . . . . 5  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
31, 2sylib 189 . . . 4  |-  ( B  e.  P.  ->  E. y 
y  e.  B )
43adantl 453 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. y  y  e.  B )
5 addclpr 8851 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
65adantr 452 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  ( A  +P.  B )  e. 
P. )
7 df-plp 8816 . . . . . . . . . . . . 13  |-  +P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  +Q  z ) } )
8 addclnq 8778 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  e.  Q. )
97, 8genpprecl 8834 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  +Q  y )  e.  ( A  +P.  B ) ) )
109imp 419 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
x  +Q  y )  e.  ( A  +P.  B ) )
11 elprnq 8824 . . . . . . . . . . . . 13  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  ( x  +Q  y )  e.  Q. )
12 addnqf 8781 . . . . . . . . . . . . . . 15  |-  +Q  :
( Q.  X.  Q. )
--> Q.
1312fdmi 5555 . . . . . . . . . . . . . 14  |-  dom  +Q  =  ( Q.  X.  Q. )
14 0nnq 8757 . . . . . . . . . . . . . 14  |-  -.  (/)  e.  Q.
1513, 14ndmovrcl 6192 . . . . . . . . . . . . 13  |-  ( ( x  +Q  y )  e.  Q.  ->  (
x  e.  Q.  /\  y  e.  Q. )
)
16 ltaddnq 8807 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  x  <Q  ( x  +Q  y ) )
1711, 15, 163syl 19 . . . . . . . . . . . 12  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  x  <Q  (
x  +Q  y ) )
18 prcdnq 8826 . . . . . . . . . . . 12  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  ( x  <Q  ( x  +Q  y )  ->  x  e.  ( A  +P.  B ) ) )
1917, 18mpd 15 . . . . . . . . . . 11  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  x  e.  ( A  +P.  B ) )
206, 10, 19syl2anc 643 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  x  e.  ( A  +P.  B
) )
2120exp32 589 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( y  e.  B  ->  x  e.  ( A  +P.  B ) ) ) )
2221com23 74 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( x  e.  A  ->  x  e.  ( A  +P.  B ) ) ) )
2322alrimdv 1640 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A. x ( x  e.  A  ->  x  e.  ( A  +P.  B
) ) ) )
24 dfss2 3297 . . . . . . 7  |-  ( A 
C_  ( A  +P.  B )  <->  A. x ( x  e.  A  ->  x  e.  ( A  +P.  B
) ) )
2523, 24syl6ibr 219 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A  C_  ( A  +P.  B ) ) )
26 vex 2919 . . . . . . . . 9  |-  y  e. 
_V
2726prlem934 8866 . . . . . . . 8  |-  ( A  e.  P.  ->  E. x  e.  A  -.  (
x  +Q  y )  e.  A )
2827adantr 452 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. x  e.  A  -.  ( x  +Q  y
)  e.  A )
29 eleq2 2465 . . . . . . . . . . . . 13  |-  ( A  =  ( A  +P.  B )  ->  ( (
x  +Q  y )  e.  A  <->  ( x  +Q  y )  e.  ( A  +P.  B ) ) )
3029biimprcd 217 . . . . . . . . . . . 12  |-  ( ( x  +Q  y )  e.  ( A  +P.  B )  ->  ( A  =  ( A  +P.  B )  ->  ( x  +Q  y )  e.  A
) )
3130con3d 127 . . . . . . . . . . 11  |-  ( ( x  +Q  y )  e.  ( A  +P.  B )  ->  ( -.  ( x  +Q  y
)  e.  A  ->  -.  A  =  ( A  +P.  B ) ) )
329, 31syl6 31 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( -.  ( x  +Q  y
)  e.  A  ->  -.  A  =  ( A  +P.  B ) ) ) )
3332exp3a 426 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( -.  ( x  +Q  y )  e.  A  ->  -.  A  =  ( A  +P.  B ) ) ) ) )
3433com34 79 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( -.  ( x  +Q  y )  e.  A  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) ) ) )
3534rexlimdv 2789 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. x  e.  A  -.  ( x  +Q  y )  e.  A  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) ) )
3628, 35mpd 15 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) )
3725, 36jcad 520 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( A  C_  ( A  +P.  B )  /\  -.  A  =  ( A  +P.  B ) ) ) )
38 dfpss2 3392 . . . . 5  |-  ( A 
C.  ( A  +P.  B )  <->  ( A  C_  ( A  +P.  B )  /\  -.  A  =  ( A  +P.  B
) ) )
3937, 38syl6ibr 219 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A  C.  ( A  +P.  B ) ) )
4039exlimdv 1643 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  y  e.  B  ->  A  C.  ( A  +P.  B
) ) )
414, 40mpd 15 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  C.  ( A  +P.  B ) )
42 ltprord 8863 . . 3  |-  ( ( A  e.  P.  /\  ( A  +P.  B )  e.  P. )  -> 
( A  <P  ( A  +P.  B )  <->  A  C.  ( A  +P.  B ) ) )
435, 42syldan 457 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  ( A  +P.  B )  <->  A  C.  ( A  +P.  B ) ) )
4441, 43mpbird 224 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667    C_ wss 3280    C. wpss 3281   (/)c0 3588   class class class wbr 4172    X. cxp 4835  (class class class)co 6040   Q.cnq 8683    +Q cplq 8686    <Q cltq 8689   P.cnp 8690    +P. cpp 8692    <P cltp 8694
This theorem is referenced by:  ltaddpr2  8868  ltexprlem7  8875  ltaprlem  8877  0lt1sr  8926  mappsrpr  8939
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-omul 6688  df-er 6864  df-ni 8705  df-pli 8706  df-mi 8707  df-lti 8708  df-plpq 8741  df-mpq 8742  df-ltpq 8743  df-enq 8744  df-nq 8745  df-erq 8746  df-plq 8747  df-mq 8748  df-1nq 8749  df-rq 8750  df-ltnq 8751  df-np 8814  df-plp 8816  df-ltp 8818
  Copyright terms: Public domain W3C validator