MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddpr Structured version   Visualization version   Unicode version

Theorem ltaddpr 9477
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )

Proof of Theorem ltaddpr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 9432 . . . . 5  |-  ( B  e.  P.  ->  B  =/=  (/) )
2 n0 3732 . . . . 5  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
31, 2sylib 201 . . . 4  |-  ( B  e.  P.  ->  E. y 
y  e.  B )
43adantl 473 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. y  y  e.  B )
5 addclpr 9461 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
65adantr 472 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  ( A  +P.  B )  e. 
P. )
7 df-plp 9426 . . . . . . . . . . . . 13  |-  +P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  +Q  z ) } )
8 addclnq 9388 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  +Q  z
)  e.  Q. )
97, 8genpprecl 9444 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  +Q  y )  e.  ( A  +P.  B ) ) )
109imp 436 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  (
x  +Q  y )  e.  ( A  +P.  B ) )
11 elprnq 9434 . . . . . . . . . . . . 13  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  ( x  +Q  y )  e.  Q. )
12 addnqf 9391 . . . . . . . . . . . . . . 15  |-  +Q  :
( Q.  X.  Q. )
--> Q.
1312fdmi 5746 . . . . . . . . . . . . . 14  |-  dom  +Q  =  ( Q.  X.  Q. )
14 0nnq 9367 . . . . . . . . . . . . . 14  |-  -.  (/)  e.  Q.
1513, 14ndmovrcl 6474 . . . . . . . . . . . . 13  |-  ( ( x  +Q  y )  e.  Q.  ->  (
x  e.  Q.  /\  y  e.  Q. )
)
16 ltaddnq 9417 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  x  <Q  ( x  +Q  y ) )
1711, 15, 163syl 18 . . . . . . . . . . . 12  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  x  <Q  (
x  +Q  y ) )
18 prcdnq 9436 . . . . . . . . . . . 12  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  ( x  <Q  ( x  +Q  y )  ->  x  e.  ( A  +P.  B ) ) )
1917, 18mpd 15 . . . . . . . . . . 11  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( x  +Q  y
)  e.  ( A  +P.  B ) )  ->  x  e.  ( A  +P.  B ) )
206, 10, 19syl2anc 673 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( x  e.  A  /\  y  e.  B
) )  ->  x  e.  ( A  +P.  B
) )
2120exp32 616 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( y  e.  B  ->  x  e.  ( A  +P.  B ) ) ) )
2221com23 80 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( x  e.  A  ->  x  e.  ( A  +P.  B ) ) ) )
2322alrimdv 1783 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A. x ( x  e.  A  ->  x  e.  ( A  +P.  B
) ) ) )
24 dfss2 3407 . . . . . . 7  |-  ( A 
C_  ( A  +P.  B )  <->  A. x ( x  e.  A  ->  x  e.  ( A  +P.  B
) ) )
2523, 24syl6ibr 235 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A  C_  ( A  +P.  B ) ) )
26 vex 3034 . . . . . . . . 9  |-  y  e. 
_V
2726prlem934 9476 . . . . . . . 8  |-  ( A  e.  P.  ->  E. x  e.  A  -.  (
x  +Q  y )  e.  A )
2827adantr 472 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. x  e.  A  -.  ( x  +Q  y
)  e.  A )
29 eleq2 2538 . . . . . . . . . . . . 13  |-  ( A  =  ( A  +P.  B )  ->  ( (
x  +Q  y )  e.  A  <->  ( x  +Q  y )  e.  ( A  +P.  B ) ) )
3029biimprcd 233 . . . . . . . . . . . 12  |-  ( ( x  +Q  y )  e.  ( A  +P.  B )  ->  ( A  =  ( A  +P.  B )  ->  ( x  +Q  y )  e.  A
) )
3130con3d 140 . . . . . . . . . . 11  |-  ( ( x  +Q  y )  e.  ( A  +P.  B )  ->  ( -.  ( x  +Q  y
)  e.  A  ->  -.  A  =  ( A  +P.  B ) ) )
329, 31syl6 33 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( -.  ( x  +Q  y
)  e.  A  ->  -.  A  =  ( A  +P.  B ) ) ) )
3332expd 443 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( y  e.  B  ->  ( -.  ( x  +Q  y )  e.  A  ->  -.  A  =  ( A  +P.  B ) ) ) ) )
3433com34 85 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  A  ->  ( -.  ( x  +Q  y )  e.  A  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) ) ) )
3534rexlimdv 2870 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. x  e.  A  -.  ( x  +Q  y )  e.  A  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) ) )
3628, 35mpd 15 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  -.  A  =  ( A  +P.  B ) ) )
3725, 36jcad 542 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  ( A  C_  ( A  +P.  B )  /\  -.  A  =  ( A  +P.  B ) ) ) )
38 dfpss2 3504 . . . . 5  |-  ( A 
C.  ( A  +P.  B )  <->  ( A  C_  ( A  +P.  B )  /\  -.  A  =  ( A  +P.  B
) ) )
3937, 38syl6ibr 235 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( y  e.  B  ->  A  C.  ( A  +P.  B ) ) )
4039exlimdv 1787 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. y  y  e.  B  ->  A  C.  ( A  +P.  B
) ) )
414, 40mpd 15 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  C.  ( A  +P.  B ) )
42 ltprord 9473 . . 3  |-  ( ( A  e.  P.  /\  ( A  +P.  B )  e.  P. )  -> 
( A  <P  ( A  +P.  B )  <->  A  C.  ( A  +P.  B ) ) )
435, 42syldan 478 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  ( A  +P.  B )  <->  A  C.  ( A  +P.  B ) ) )
4441, 43mpbird 240 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376   A.wal 1450    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   E.wrex 2757    C_ wss 3390    C. wpss 3391   (/)c0 3722   class class class wbr 4395    X. cxp 4837  (class class class)co 6308   Q.cnq 9295    +Q cplq 9298    <Q cltq 9301   P.cnp 9302    +P. cpp 9304    <P cltp 9306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-omul 7205  df-er 7381  df-ni 9315  df-pli 9316  df-mi 9317  df-lti 9318  df-plpq 9351  df-mpq 9352  df-ltpq 9353  df-enq 9354  df-nq 9355  df-erq 9356  df-plq 9357  df-mq 9358  df-1nq 9359  df-rq 9360  df-ltnq 9361  df-np 9424  df-plp 9426  df-ltp 9428
This theorem is referenced by:  ltaddpr2  9478  ltexprlem7  9485  ltaprlem  9487  0lt1sr  9537  mappsrpr  9550
  Copyright terms: Public domain W3C validator