MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddnq Structured version   Unicode version

Theorem ltaddnq 9341
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  <Q  ( A  +Q  B ) )

Proof of Theorem ltaddnq
Dummy variables  x  y  s  r  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3  |-  ( x  =  A  ->  x  =  A )
2 oveq1 6277 . . 3  |-  ( x  =  A  ->  (
x  +Q  y )  =  ( A  +Q  y ) )
31, 2breq12d 4452 . 2  |-  ( x  =  A  ->  (
x  <Q  ( x  +Q  y )  <->  A  <Q  ( A  +Q  y ) ) )
4 oveq2 6278 . . 3  |-  ( y  =  B  ->  ( A  +Q  y )  =  ( A  +Q  B
) )
54breq2d 4451 . 2  |-  ( y  =  B  ->  ( A  <Q  ( A  +Q  y )  <->  A  <Q  ( A  +Q  B ) ) )
6 1lt2nq 9340 . . . . . . . 8  |-  1Q  <Q  ( 1Q  +Q  1Q )
7 ltmnq 9339 . . . . . . . 8  |-  ( y  e.  Q.  ->  ( 1Q  <Q  ( 1Q  +Q  1Q )  <->  ( y  .Q  1Q )  <Q  (
y  .Q  ( 1Q 
+Q  1Q ) ) ) )
86, 7mpbii 211 . . . . . . 7  |-  ( y  e.  Q.  ->  (
y  .Q  1Q ) 
<Q  ( y  .Q  ( 1Q  +Q  1Q ) ) )
9 mulidnq 9330 . . . . . . 7  |-  ( y  e.  Q.  ->  (
y  .Q  1Q )  =  y )
10 distrnq 9328 . . . . . . . 8  |-  ( y  .Q  ( 1Q  +Q  1Q ) )  =  ( ( y  .Q  1Q )  +Q  ( y  .Q  1Q ) )
119, 9oveq12d 6288 . . . . . . . 8  |-  ( y  e.  Q.  ->  (
( y  .Q  1Q )  +Q  ( y  .Q  1Q ) )  =  ( y  +Q  y
) )
1210, 11syl5eq 2507 . . . . . . 7  |-  ( y  e.  Q.  ->  (
y  .Q  ( 1Q 
+Q  1Q ) )  =  ( y  +Q  y ) )
138, 9, 123brtr3d 4468 . . . . . 6  |-  ( y  e.  Q.  ->  y  <Q  ( y  +Q  y
) )
14 ltanq 9338 . . . . . 6  |-  ( x  e.  Q.  ->  (
y  <Q  ( y  +Q  y )  <->  ( x  +Q  y )  <Q  (
x  +Q  ( y  +Q  y ) ) ) )
1513, 14syl5ib 219 . . . . 5  |-  ( x  e.  Q.  ->  (
y  e.  Q.  ->  ( x  +Q  y ) 
<Q  ( x  +Q  (
y  +Q  y ) ) ) )
1615imp 427 . . . 4  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  +Q  y
)  <Q  ( x  +Q  ( y  +Q  y
) ) )
17 addcomnq 9318 . . . 4  |-  ( x  +Q  y )  =  ( y  +Q  x
)
18 vex 3109 . . . . 5  |-  x  e. 
_V
19 vex 3109 . . . . 5  |-  y  e. 
_V
20 addcomnq 9318 . . . . 5  |-  ( r  +Q  s )  =  ( s  +Q  r
)
21 addassnq 9325 . . . . 5  |-  ( ( r  +Q  s )  +Q  t )  =  ( r  +Q  (
s  +Q  t ) )
2218, 19, 19, 20, 21caov12 6476 . . . 4  |-  ( x  +Q  ( y  +Q  y ) )  =  ( y  +Q  (
x  +Q  y ) )
2316, 17, 223brtr3g 4470 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( y  +Q  x
)  <Q  ( y  +Q  ( x  +Q  y
) ) )
24 ltanq 9338 . . . 4  |-  ( y  e.  Q.  ->  (
x  <Q  ( x  +Q  y )  <->  ( y  +Q  x )  <Q  (
y  +Q  ( x  +Q  y ) ) ) )
2524adantl 464 . . 3  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  <Q  (
x  +Q  y )  <-> 
( y  +Q  x
)  <Q  ( y  +Q  ( x  +Q  y
) ) ) )
2623, 25mpbird 232 . 2  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  x  <Q  ( x  +Q  y ) )
273, 5, 26vtocl2ga 3172 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  <Q  ( A  +Q  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   class class class wbr 4439  (class class class)co 6270   Q.cnq 9219   1Qc1q 9220    +Q cplq 9222    .Q cmq 9223    <Q cltq 9225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-omul 7127  df-er 7303  df-ni 9239  df-pli 9240  df-mi 9241  df-lti 9242  df-plpq 9275  df-mpq 9276  df-ltpq 9277  df-enq 9278  df-nq 9279  df-erq 9280  df-plq 9281  df-mq 9282  df-1nq 9283  df-ltnq 9285
This theorem is referenced by:  ltexnq  9342  nsmallnq  9344  ltbtwnnq  9345  prlem934  9400  ltaddpr  9401  ltexprlem2  9404  ltexprlem4  9406
  Copyright terms: Public domain W3C validator