MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltadd2dd Unicode version

Theorem ltadd2dd 9185
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
letrd.3  |-  ( ph  ->  C  e.  RR )
ltletrd.4  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ltadd2dd  |-  ( ph  ->  ( C  +  A
)  <  ( C  +  B ) )

Proof of Theorem ltadd2dd
StepHypRef Expression
1 ltletrd.4 . 2  |-  ( ph  ->  A  <  B )
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 letrd.3 . . 3  |-  ( ph  ->  C  e.  RR )
52, 3, 4ltadd2d 9182 . 2  |-  ( ph  ->  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B ) ) )
61, 5mpbid 202 1  |-  ( ph  ->  ( C  +  A
)  <  ( C  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1721   class class class wbr 4172  (class class class)co 6040   RRcr 8945    + caddc 8949    < clt 9076
This theorem is referenced by:  eirrlem  12758  prmreclem5  13243  iccntr  18805  icccmplem2  18807  ivthlem2  19302  uniioombllem3  19430  opnmbllem  19446  dvcnvre  19856  cosordlem  20386  efif1olem2  20398  atanlogaddlem  20706  pntibndlem2  21238  pntlemr  21249  dya2icoseg  24580  mblfinlem  26143  stoweidlem11  27627  stoweidlem14  27630  stoweidlem26  27642  stoweidlem44  27660
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-addrcl 9007  ax-pre-lttri 9020  ax-pre-ltadd 9022
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-ltxr 9081
  Copyright terms: Public domain W3C validator