MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltadd1dd Structured version   Unicode version

Theorem ltadd1dd 9942
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
ltadd1dd.4  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ltadd1dd  |-  ( ph  ->  ( A  +  C
)  <  ( B  +  C ) )

Proof of Theorem ltadd1dd
StepHypRef Expression
1 ltadd1dd.4 . 2  |-  ( ph  ->  A  <  B )
2 leidd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltnegd.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 ltadd1d.3 . . 3  |-  ( ph  ->  C  e.  RR )
52, 3, 4ltadd1d 9924 . 2  |-  ( ph  ->  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C ) ) )
61, 5mpbid 210 1  |-  ( ph  ->  ( A  +  C
)  <  ( B  +  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1756   class class class wbr 4287  (class class class)co 6086   RRcr 9273    + caddc 9277    < clt 9410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-ltxr 9415
This theorem is referenced by:  fzoaddel  11589  fladdz  11662  fzsdom2  12181  sadcaddlem  13645  iserodd  13894  4sqlem12  14009  efif1olem1  21973  atanlogsublem  22285  subfacval3  27029  itg2addnclem3  28398  rmspecfund  29203  jm2.24nn  29255  stirlinglem5  29826
  Copyright terms: Public domain W3C validator