MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt6abl Structured version   Unicode version

Theorem lt6abl 16383
Description: A group with fewer than  6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
lt6abl  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  ->  G  e.  Abel )

Proof of Theorem lt6abl
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . . . . 7  |-  B  =  ( Base `  G
)
21grpbn0 15579 . . . . . 6  |-  ( G  e.  Grp  ->  B  =/=  (/) )
32adantr 465 . . . . 5  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  ->  B  =/=  (/) )
4 6re 10414 . . . . . . . 8  |-  6  e.  RR
5 rexr 9441 . . . . . . . 8  |-  ( 6  e.  RR  ->  6  e.  RR* )
6 pnfnlt 11120 . . . . . . . 8  |-  ( 6  e.  RR*  ->  -. +oo  <  6 )
74, 5, 6mp2b 10 . . . . . . 7  |-  -. +oo  <  6
8 fvex 5713 . . . . . . . . . . . . 13  |-  ( Base `  G )  e.  _V
91, 8eqeltri 2513 . . . . . . . . . . . 12  |-  B  e. 
_V
109a1i 11 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  B  e.  _V )
11 hashinf 12120 . . . . . . . . . . 11  |-  ( ( B  e.  _V  /\  -.  B  e.  Fin )  ->  ( # `  B
)  = +oo )
1210, 11sylan 471 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  -.  B  e.  Fin )  ->  ( # `  B
)  = +oo )
1312breq1d 4314 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  -.  B  e.  Fin )  ->  ( ( # `  B )  <  6  <-> +oo 
<  6 ) )
1413biimpd 207 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -.  B  e.  Fin )  ->  ( ( # `  B )  <  6  -> +oo  <  6 ) )
1514impancom 440 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( -.  B  e. 
Fin  -> +oo  <  6
) )
167, 15mt3i 126 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  ->  B  e.  Fin )
17 hashnncl 12146 . . . . . 6  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
1816, 17syl 16 . . . . 5  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
193, 18mpbird 232 . . . 4  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( # `  B )  e.  NN )
20 nnuz 10908 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2119, 20syl6eleq 2533 . . 3  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( # `  B )  e.  ( ZZ>= `  1
) )
22 6nn 10495 . . . . 5  |-  6  e.  NN
2322nnzi 10682 . . . 4  |-  6  e.  ZZ
2423a1i 11 . . 3  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
6  e.  ZZ )
25 simpr 461 . . 3  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( # `  B )  <  6 )
26 elfzo2 11568 . . 3  |-  ( (
# `  B )  e.  ( 1..^ 6 )  <-> 
( ( # `  B
)  e.  ( ZZ>= ` 
1 )  /\  6  e.  ZZ  /\  ( # `  B )  <  6
) )
2721, 24, 25, 26syl3anbrc 1172 . 2  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( # `  B )  e.  ( 1..^ 6 ) )
28 df-6 10396 . . . . . . 7  |-  6  =  ( 5  +  1 )
2928oveq2i 6114 . . . . . 6  |-  ( 1..^ 6 )  =  ( 1..^ ( 5  +  1 ) )
3029eleq2i 2507 . . . . 5  |-  ( (
# `  B )  e.  ( 1..^ 6 )  <-> 
( # `  B )  e.  ( 1..^ ( 5  +  1 ) ) )
31 5nn 10494 . . . . . . 7  |-  5  e.  NN
3231, 20eleqtri 2515 . . . . . 6  |-  5  e.  ( ZZ>= `  1 )
33 fzosplitsni 11646 . . . . . 6  |-  ( 5  e.  ( ZZ>= `  1
)  ->  ( ( # `
 B )  e.  ( 1..^ ( 5  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 5 )  \/  ( # `
 B )  =  5 ) ) )
3432, 33ax-mp 5 . . . . 5  |-  ( (
# `  B )  e.  ( 1..^ ( 5  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 5 )  \/  ( # `
 B )  =  5 ) )
3530, 34bitri 249 . . . 4  |-  ( (
# `  B )  e.  ( 1..^ 6 )  <-> 
( ( # `  B
)  e.  ( 1..^ 5 )  \/  ( # `
 B )  =  5 ) )
36 df-5 10395 . . . . . . . . 9  |-  5  =  ( 4  +  1 )
3736oveq2i 6114 . . . . . . . 8  |-  ( 1..^ 5 )  =  ( 1..^ ( 4  +  1 ) )
3837eleq2i 2507 . . . . . . 7  |-  ( (
# `  B )  e.  ( 1..^ 5 )  <-> 
( # `  B )  e.  ( 1..^ ( 4  +  1 ) ) )
39 4nn 10493 . . . . . . . . 9  |-  4  e.  NN
4039, 20eleqtri 2515 . . . . . . . 8  |-  4  e.  ( ZZ>= `  1 )
41 fzosplitsni 11646 . . . . . . . 8  |-  ( 4  e.  ( ZZ>= `  1
)  ->  ( ( # `
 B )  e.  ( 1..^ ( 4  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 4 )  \/  ( # `
 B )  =  4 ) ) )
4240, 41ax-mp 5 . . . . . . 7  |-  ( (
# `  B )  e.  ( 1..^ ( 4  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 4 )  \/  ( # `
 B )  =  4 ) )
4338, 42bitri 249 . . . . . 6  |-  ( (
# `  B )  e.  ( 1..^ 5 )  <-> 
( ( # `  B
)  e.  ( 1..^ 4 )  \/  ( # `
 B )  =  4 ) )
44 df-4 10394 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
4544oveq2i 6114 . . . . . . . . . 10  |-  ( 1..^ 4 )  =  ( 1..^ ( 3  +  1 ) )
4645eleq2i 2507 . . . . . . . . 9  |-  ( (
# `  B )  e.  ( 1..^ 4 )  <-> 
( # `  B )  e.  ( 1..^ ( 3  +  1 ) ) )
47 3nn 10492 . . . . . . . . . . 11  |-  3  e.  NN
4847, 20eleqtri 2515 . . . . . . . . . 10  |-  3  e.  ( ZZ>= `  1 )
49 fzosplitsni 11646 . . . . . . . . . 10  |-  ( 3  e.  ( ZZ>= `  1
)  ->  ( ( # `
 B )  e.  ( 1..^ ( 3  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 3 )  \/  ( # `
 B )  =  3 ) ) )
5048, 49ax-mp 5 . . . . . . . . 9  |-  ( (
# `  B )  e.  ( 1..^ ( 3  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 3 )  \/  ( # `
 B )  =  3 ) )
5146, 50bitri 249 . . . . . . . 8  |-  ( (
# `  B )  e.  ( 1..^ 4 )  <-> 
( ( # `  B
)  e.  ( 1..^ 3 )  \/  ( # `
 B )  =  3 ) )
52 df-3 10393 . . . . . . . . . . . . 13  |-  3  =  ( 2  +  1 )
5352oveq2i 6114 . . . . . . . . . . . 12  |-  ( 1..^ 3 )  =  ( 1..^ ( 2  +  1 ) )
5453eleq2i 2507 . . . . . . . . . . 11  |-  ( (
# `  B )  e.  ( 1..^ 3 )  <-> 
( # `  B )  e.  ( 1..^ ( 2  +  1 ) ) )
55 2nn 10491 . . . . . . . . . . . . 13  |-  2  e.  NN
5655, 20eleqtri 2515 . . . . . . . . . . . 12  |-  2  e.  ( ZZ>= `  1 )
57 fzosplitsni 11646 . . . . . . . . . . . 12  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( ( # `
 B )  e.  ( 1..^ ( 2  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 2 )  \/  ( # `
 B )  =  2 ) ) )
5856, 57ax-mp 5 . . . . . . . . . . 11  |-  ( (
# `  B )  e.  ( 1..^ ( 2  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 2 )  \/  ( # `
 B )  =  2 ) )
5954, 58bitri 249 . . . . . . . . . 10  |-  ( (
# `  B )  e.  ( 1..^ 3 )  <-> 
( ( # `  B
)  e.  ( 1..^ 2 )  \/  ( # `
 B )  =  2 ) )
60 elsni 3914 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  B )  e.  { 1 }  ->  (
# `  B )  =  1 )
61 df-2 10392 . . . . . . . . . . . . . . . . . . 19  |-  2  =  ( 1  +  1 )
6261oveq2i 6114 . . . . . . . . . . . . . . . . . 18  |-  ( 1..^ 2 )  =  ( 1..^ ( 1  +  1 ) )
63 1z 10688 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  ZZ
64 fzosn 11618 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  e.  ZZ  ->  (
1..^ ( 1  +  1 ) )  =  { 1 } )
6563, 64ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( 1..^ ( 1  +  1 ) )  =  {
1 }
6662, 65eqtri 2463 . . . . . . . . . . . . . . . . 17  |-  ( 1..^ 2 )  =  {
1 }
6760, 66eleq2s 2535 . . . . . . . . . . . . . . . 16  |-  ( (
# `  B )  e.  ( 1..^ 2 )  ->  ( # `  B
)  =  1 )
6867adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  ( # `
 B )  =  1 )
69 hash1 12174 . . . . . . . . . . . . . . 15  |-  ( # `  1o )  =  1
7068, 69syl6eqr 2493 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  ( # `
 B )  =  ( # `  1o ) )
71 1nn0 10607 . . . . . . . . . . . . . . . . 17  |-  1  e.  NN0
7268, 71syl6eqel 2531 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  ( # `
 B )  e. 
NN0 )
73 hashclb 12140 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  _V  ->  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
)
749, 73ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
7572, 74sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  B  e.  Fin )
76 1onn 7090 . . . . . . . . . . . . . . . 16  |-  1o  e.  om
77 nnfi 7515 . . . . . . . . . . . . . . . 16  |-  ( 1o  e.  om  ->  1o  e.  Fin )
7876, 77ax-mp 5 . . . . . . . . . . . . . . 15  |-  1o  e.  Fin
79 hashen 12130 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  Fin  /\  1o  e.  Fin )  -> 
( ( # `  B
)  =  ( # `  1o )  <->  B  ~~  1o ) )
8075, 78, 79sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  (
( # `  B )  =  ( # `  1o ) 
<->  B  ~~  1o ) )
8170, 80mpbid 210 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  B  ~~  1o )
8210cyg 16381 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  B  ~~  1o )  ->  G  e. CycGrp )
83 cygabl 16379 . . . . . . . . . . . . . 14  |-  ( G  e. CycGrp  ->  G  e.  Abel )
8482, 83syl 16 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  B  ~~  1o )  ->  G  e.  Abel )
8581, 84syldan 470 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  G  e.  Abel )
8685ex 434 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 2 )  ->  G  e.  Abel ) )
87 id 22 . . . . . . . . . . . . 13  |-  ( (
# `  B )  =  2  ->  ( # `
 B )  =  2 )
88 2prm 13791 . . . . . . . . . . . . 13  |-  2  e.  Prime
8987, 88syl6eqel 2531 . . . . . . . . . . . 12  |-  ( (
# `  B )  =  2  ->  ( # `
 B )  e. 
Prime )
901prmcyg 16382 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  Prime )  ->  G  e. CycGrp )
9190, 83syl 16 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  Prime )  ->  G  e.  Abel )
9291ex 434 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  Prime  ->  G  e. 
Abel ) )
9389, 92syl5 32 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (
( # `  B )  =  2  ->  G  e.  Abel ) )
9486, 93jaod 380 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  (
( ( # `  B
)  e.  ( 1..^ 2 )  \/  ( # `
 B )  =  2 )  ->  G  e.  Abel ) )
9559, 94syl5bi 217 . . . . . . . . 9  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 3 )  ->  G  e.  Abel ) )
96 id 22 . . . . . . . . . . 11  |-  ( (
# `  B )  =  3  ->  ( # `
 B )  =  3 )
97 3prm 13792 . . . . . . . . . . 11  |-  3  e.  Prime
9896, 97syl6eqel 2531 . . . . . . . . . 10  |-  ( (
# `  B )  =  3  ->  ( # `
 B )  e. 
Prime )
9998, 92syl5 32 . . . . . . . . 9  |-  ( G  e.  Grp  ->  (
( # `  B )  =  3  ->  G  e.  Abel ) )
10095, 99jaod 380 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
( ( # `  B
)  e.  ( 1..^ 3 )  \/  ( # `
 B )  =  3 )  ->  G  e.  Abel ) )
10151, 100syl5bi 217 . . . . . . 7  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 4 )  ->  G  e.  Abel ) )
102 simpl 457 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  ->  G  e.  Grp )
103 2z 10690 . . . . . . . . . . 11  |-  2  e.  ZZ
104 eqid 2443 . . . . . . . . . . . 12  |-  (gEx `  G )  =  (gEx
`  G )
105 eqid 2443 . . . . . . . . . . . 12  |-  ( od
`  G )  =  ( od `  G
)
1061, 104, 105gexdvds2 16096 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  2  e.  ZZ )  ->  ( (gEx `  G
)  ||  2  <->  A. x  e.  B  ( ( od `  G ) `  x )  ||  2
) )
107102, 103, 106sylancl 662 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( (gEx `  G
)  ||  2  <->  A. x  e.  B  ( ( od `  G ) `  x )  ||  2
) )
1081, 104gex2abl 16345 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  (gEx `  G )  ||  2 )  ->  G  e.  Abel )
109108ex 434 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (
(gEx `  G )  ||  2  ->  G  e. 
Abel ) )
110109adantr 465 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( (gEx `  G
)  ||  2  ->  G  e.  Abel ) )
111107, 110sylbird 235 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( A. x  e.  B  ( ( od
`  G ) `  x )  ||  2  ->  G  e.  Abel )
)
112 rexnal 2738 . . . . . . . . . 10  |-  ( E. x  e.  B  -.  ( ( od `  G ) `  x
)  ||  2  <->  -.  A. x  e.  B  ( ( od `  G ) `  x )  ||  2
)
113102adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  G  e.  Grp )
114 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  x  e.  B )
1151, 105odcl 16051 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  ->  (
( od `  G
) `  x )  e.  NN0 )
116115ad2antrl 727 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  e.  NN0 )
117 4nn0 10610 . . . . . . . . . . . . . . . 16  |-  4  e.  NN0
118117a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
4  e.  NN0 )
119 simpr 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( # `  B )  =  4 )
120119, 117syl6eqel 2531 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( # `  B )  e.  NN0 )
121120, 74sylibr 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  ->  B  e.  Fin )
122121adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  B  e.  Fin )
1231, 105oddvds2 16079 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  B  e.  Fin  /\  x  e.  B )  ->  (
( od `  G
) `  x )  ||  ( # `  B
) )
124113, 122, 114, 123syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  ||  ( # `  B
) )
125119adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( # `  B )  =  4 )
126124, 125breqtrd 4328 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  ||  4 )
127 sq2 11974 . . . . . . . . . . . . . . . . 17  |-  ( 2 ^ 2 )  =  4
128103a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
2  e.  ZZ )
129 2nn0 10608 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN0
130129a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
2  e.  NN0 )
1311, 105odcl2 16078 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( G  e.  Grp  /\  B  e.  Fin  /\  x  e.  B )  ->  (
( od `  G
) `  x )  e.  NN )
132113, 122, 114, 131syl3anc 1218 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  e.  NN )
133 pccl 13928 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  Prime  /\  (
( od `  G
) `  x )  e.  NN )  ->  (
2  pCnt  ( ( od `  G ) `  x ) )  e. 
NN0 )
13488, 132, 133sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2  pCnt  (
( od `  G
) `  x )
)  e.  NN0 )
135134nn0zd 10757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2  pCnt  (
( od `  G
) `  x )
)  e.  ZZ )
136 simprr 756 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  -.  ( ( od `  G ) `  x
)  ||  2 )
137 dvdsexp 13601 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 2  e.  ZZ  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  NN0  /\  1  e.  ( ZZ>= `  ( 2  pCnt  (
( od `  G
) `  x )
) ) )  -> 
( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) ) 
||  ( 2 ^ 1 ) )
1381373expia 1189 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 2  e.  ZZ  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  NN0 )  ->  ( 1  e.  (
ZZ>= `  ( 2  pCnt 
( ( od `  G ) `  x
) ) )  -> 
( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) ) 
||  ( 2 ^ 1 ) ) )
139103, 134, 138sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  e.  (
ZZ>= `  ( 2  pCnt 
( ( od `  G ) `  x
) ) )  -> 
( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) ) 
||  ( 2 ^ 1 ) ) )
140 eluz 10886 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( 2  pCnt  (
( od `  G
) `  x )
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( 1  e.  (
ZZ>= `  ( 2  pCnt 
( ( od `  G ) `  x
) ) )  <->  ( 2 
pCnt  ( ( od
`  G ) `  x ) )  <_ 
1 ) )
141135, 63, 140sylancl 662 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  e.  (
ZZ>= `  ( 2  pCnt 
( ( od `  G ) `  x
) ) )  <->  ( 2 
pCnt  ( ( od
`  G ) `  x ) )  <_ 
1 ) )
142 oveq2 6111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  2  ->  (
2 ^ n )  =  ( 2 ^ 2 ) )
143142, 127syl6eq 2491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  2  ->  (
2 ^ n )  =  4 )
144143breq2d 4316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  2  ->  (
( ( od `  G ) `  x
)  ||  ( 2 ^ n )  <->  ( ( od `  G ) `  x )  ||  4
) )
145144rspcev 3085 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 2  e.  NN0  /\  ( ( od `  G ) `  x
)  ||  4 )  ->  E. n  e.  NN0  ( ( od `  G ) `  x
)  ||  ( 2 ^ n ) )
146129, 126, 145sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  E. n  e.  NN0  ( ( od `  G ) `  x
)  ||  ( 2 ^ n ) )
147 pcprmpw2 13960 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 2  e.  Prime  /\  (
( od `  G
) `  x )  e.  NN )  ->  ( E. n  e.  NN0  ( ( od `  G ) `  x
)  ||  ( 2 ^ n )  <->  ( ( od `  G ) `  x )  =  ( 2 ^ ( 2 
pCnt  ( ( od
`  G ) `  x ) ) ) ) )
14888, 132, 147sylancr 663 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( E. n  e. 
NN0  ( ( od
`  G ) `  x )  ||  (
2 ^ n )  <-> 
( ( od `  G ) `  x
)  =  ( 2 ^ ( 2  pCnt 
( ( od `  G ) `  x
) ) ) ) )
149146, 148mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  =  ( 2 ^ ( 2  pCnt 
( ( od `  G ) `  x
) ) ) )
150149eqcomd 2448 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) )  =  ( ( od
`  G ) `  x ) )
151 2cn 10404 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  2  e.  CC
152 exp1 11883 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 2  e.  CC  ->  (
2 ^ 1 )  =  2 )
153151, 152ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 2 ^ 1 )  =  2
154153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2 ^ 1 )  =  2 )
155150, 154breq12d 4317 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( 2 ^ ( 2  pCnt  (
( od `  G
) `  x )
) )  ||  (
2 ^ 1 )  <-> 
( ( od `  G ) `  x
)  ||  2 ) )
156139, 141, 1553imtr3d 267 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( 2  pCnt 
( ( od `  G ) `  x
) )  <_  1  ->  ( ( od `  G ) `  x
)  ||  2 ) )
157136, 156mtod 177 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  -.  ( 2  pCnt  (
( od `  G
) `  x )
)  <_  1 )
158 1re 9397 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  RR
159134nn0red 10649 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2  pCnt  (
( od `  G
) `  x )
)  e.  RR )
160 ltnle 9466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  e.  RR  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  RR )  ->  ( 1  < 
( 2  pCnt  (
( od `  G
) `  x )
)  <->  -.  ( 2 
pCnt  ( ( od
`  G ) `  x ) )  <_ 
1 ) )
161158, 159, 160sylancr 663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  <  (
2  pCnt  ( ( od `  G ) `  x ) )  <->  -.  (
2  pCnt  ( ( od `  G ) `  x ) )  <_ 
1 ) )
162157, 161mpbird 232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
1  <  ( 2 
pCnt  ( ( od
`  G ) `  x ) ) )
163 nn0ltp1le 10714 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  NN0  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  NN0 )  ->  ( 1  <  (
2  pCnt  ( ( od `  G ) `  x ) )  <->  ( 1  +  1 )  <_ 
( 2  pCnt  (
( od `  G
) `  x )
) ) )
16471, 134, 163sylancr 663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  <  (
2  pCnt  ( ( od `  G ) `  x ) )  <->  ( 1  +  1 )  <_ 
( 2  pCnt  (
( od `  G
) `  x )
) ) )
165162, 164mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  +  1 )  <_  ( 2 
pCnt  ( ( od
`  G ) `  x ) ) )
16661, 165syl5eqbr 4337 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
2  <_  ( 2 
pCnt  ( ( od
`  G ) `  x ) ) )
167 eluz2 10879 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  pCnt  ( ( od `  G ) `  x ) )  e.  ( ZZ>= `  2 )  <->  ( 2  e.  ZZ  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  ZZ  /\  2  <_  ( 2  pCnt 
( ( od `  G ) `  x
) ) ) )
168128, 135, 166, 167syl3anbrc 1172 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2  pCnt  (
( od `  G
) `  x )
)  e.  ( ZZ>= ` 
2 ) )
169 dvdsexp 13601 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  2  e.  NN0  /\  (
2  pCnt  ( ( od `  G ) `  x ) )  e.  ( ZZ>= `  2 )
)  ->  ( 2 ^ 2 )  ||  ( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) ) )
170128, 130, 168, 169syl3anc 1218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2 ^ 2 )  ||  ( 2 ^ ( 2  pCnt 
( ( od `  G ) `  x
) ) ) )
171127, 170syl5eqbrr 4338 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
4  ||  ( 2 ^ ( 2  pCnt 
( ( od `  G ) `  x
) ) ) )
172171, 149breqtrrd 4330 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
4  ||  ( ( od `  G ) `  x ) )
173 dvdseq 13592 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( od
`  G ) `  x )  e.  NN0  /\  4  e.  NN0 )  /\  ( ( ( od
`  G ) `  x )  ||  4  /\  4  ||  ( ( od `  G ) `
 x ) ) )  ->  ( ( od `  G ) `  x )  =  4 )
174116, 118, 126, 172, 173syl22anc 1219 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  =  4 )
175174, 125eqtr4d 2478 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  =  ( # `  B ) )
1761, 105, 113, 114, 175iscygodd 16377 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  G  e. CycGrp )
177176, 83syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  G  e.  Abel )
178177rexlimdvaa 2854 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( E. x  e.  B  -.  ( ( od `  G ) `
 x )  ||  2  ->  G  e.  Abel ) )
179112, 178syl5bir 218 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( -.  A. x  e.  B  ( ( od `  G ) `  x )  ||  2  ->  G  e.  Abel )
)
180111, 179pm2.61d 158 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  ->  G  e.  Abel )
181180ex 434 . . . . . . 7  |-  ( G  e.  Grp  ->  (
( # `  B )  =  4  ->  G  e.  Abel ) )
182101, 181jaod 380 . . . . . 6  |-  ( G  e.  Grp  ->  (
( ( # `  B
)  e.  ( 1..^ 4 )  \/  ( # `
 B )  =  4 )  ->  G  e.  Abel ) )
18343, 182syl5bi 217 . . . . 5  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 5 )  ->  G  e.  Abel ) )
184 id 22 . . . . . . 7  |-  ( (
# `  B )  =  5  ->  ( # `
 B )  =  5 )
185 5prm 14148 . . . . . . 7  |-  5  e.  Prime
186184, 185syl6eqel 2531 . . . . . 6  |-  ( (
# `  B )  =  5  ->  ( # `
 B )  e. 
Prime )
187186, 92syl5 32 . . . . 5  |-  ( G  e.  Grp  ->  (
( # `  B )  =  5  ->  G  e.  Abel ) )
188183, 187jaod 380 . . . 4  |-  ( G  e.  Grp  ->  (
( ( # `  B
)  e.  ( 1..^ 5 )  \/  ( # `
 B )  =  5 )  ->  G  e.  Abel ) )
18935, 188syl5bi 217 . . 3  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 6 )  ->  G  e.  Abel ) )
190189imp 429 . 2  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 6 ) )  ->  G  e.  Abel )
19127, 190syldan 470 1  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  ->  G  e.  Abel )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727   E.wrex 2728   _Vcvv 2984   (/)c0 3649   {csn 3889   class class class wbr 4304   ` cfv 5430  (class class class)co 6103   omcom 6488   1oc1o 6925    ~~ cen 7319   Fincfn 7322   CCcc 9292   RRcr 9293   1c1 9295    + caddc 9297   +oocpnf 9427   RR*cxr 9429    < clt 9430    <_ cle 9431   NNcn 10334   2c2 10383   3c3 10384   4c4 10385   5c5 10386   6c6 10387   NN0cn0 10591   ZZcz 10658   ZZ>=cuz 10873  ..^cfzo 11560   ^cexp 11877   #chash 12115    || cdivides 13547   Primecprime 13775    pCnt cpc 13915   Basecbs 14186   Grpcgrp 15422   odcod 16040  gExcgex 16041   Abelcabel 16290  CycGrpccyg 16366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-disj 4275  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-omul 6937  df-er 7113  df-ec 7115  df-qs 7119  df-map 7228  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-oi 7736  df-card 8121  df-acn 8124  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-fz 11450  df-fzo 11561  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878  df-hash 12116  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-clim 12978  df-sum 13176  df-dvds 13548  df-gcd 13703  df-prm 13776  df-pc 13916  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-0g 14392  df-mnd 15427  df-grp 15557  df-minusg 15558  df-sbg 15559  df-mulg 15560  df-subg 15690  df-eqg 15692  df-od 16044  df-gex 16045  df-cmn 16291  df-abl 16292  df-cyg 16367
This theorem is referenced by:  pgrple2abel  30780
  Copyright terms: Public domain W3C validator