MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt6abl Structured version   Unicode version

Theorem lt6abl 16364
Description: A group with fewer than  6 elements is abelian. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
lt6abl  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  ->  G  e.  Abel )

Proof of Theorem lt6abl
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . . . . 7  |-  B  =  ( Base `  G
)
21grpbn0 15560 . . . . . 6  |-  ( G  e.  Grp  ->  B  =/=  (/) )
32adantr 462 . . . . 5  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  ->  B  =/=  (/) )
4 6re 10398 . . . . . . . 8  |-  6  e.  RR
5 rexr 9425 . . . . . . . 8  |-  ( 6  e.  RR  ->  6  e.  RR* )
6 pnfnlt 11104 . . . . . . . 8  |-  ( 6  e.  RR*  ->  -. +oo  <  6 )
74, 5, 6mp2b 10 . . . . . . 7  |-  -. +oo  <  6
8 fvex 5698 . . . . . . . . . . . . 13  |-  ( Base `  G )  e.  _V
91, 8eqeltri 2511 . . . . . . . . . . . 12  |-  B  e. 
_V
109a1i 11 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  B  e.  _V )
11 hashinf 12104 . . . . . . . . . . 11  |-  ( ( B  e.  _V  /\  -.  B  e.  Fin )  ->  ( # `  B
)  = +oo )
1210, 11sylan 468 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  -.  B  e.  Fin )  ->  ( # `  B
)  = +oo )
1312breq1d 4299 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  -.  B  e.  Fin )  ->  ( ( # `  B )  <  6  <-> +oo 
<  6 ) )
1413biimpd 207 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -.  B  e.  Fin )  ->  ( ( # `  B )  <  6  -> +oo  <  6 ) )
1514impancom 438 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( -.  B  e. 
Fin  -> +oo  <  6
) )
167, 15mt3i 126 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  ->  B  e.  Fin )
17 hashnncl 12130 . . . . . 6  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
1816, 17syl 16 . . . . 5  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
193, 18mpbird 232 . . . 4  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( # `  B )  e.  NN )
20 nnuz 10892 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2119, 20syl6eleq 2531 . . 3  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( # `  B )  e.  ( ZZ>= `  1
) )
22 6nn 10479 . . . . 5  |-  6  e.  NN
2322nnzi 10666 . . . 4  |-  6  e.  ZZ
2423a1i 11 . . 3  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
6  e.  ZZ )
25 simpr 458 . . 3  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( # `  B )  <  6 )
26 elfzo2 11552 . . 3  |-  ( (
# `  B )  e.  ( 1..^ 6 )  <-> 
( ( # `  B
)  e.  ( ZZ>= ` 
1 )  /\  6  e.  ZZ  /\  ( # `  B )  <  6
) )
2721, 24, 25, 26syl3anbrc 1167 . 2  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  -> 
( # `  B )  e.  ( 1..^ 6 ) )
28 df-6 10380 . . . . . . 7  |-  6  =  ( 5  +  1 )
2928oveq2i 6101 . . . . . 6  |-  ( 1..^ 6 )  =  ( 1..^ ( 5  +  1 ) )
3029eleq2i 2505 . . . . 5  |-  ( (
# `  B )  e.  ( 1..^ 6 )  <-> 
( # `  B )  e.  ( 1..^ ( 5  +  1 ) ) )
31 5nn 10478 . . . . . . 7  |-  5  e.  NN
3231, 20eleqtri 2513 . . . . . 6  |-  5  e.  ( ZZ>= `  1 )
33 fzosplitsni 11630 . . . . . 6  |-  ( 5  e.  ( ZZ>= `  1
)  ->  ( ( # `
 B )  e.  ( 1..^ ( 5  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 5 )  \/  ( # `
 B )  =  5 ) ) )
3432, 33ax-mp 5 . . . . 5  |-  ( (
# `  B )  e.  ( 1..^ ( 5  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 5 )  \/  ( # `
 B )  =  5 ) )
3530, 34bitri 249 . . . 4  |-  ( (
# `  B )  e.  ( 1..^ 6 )  <-> 
( ( # `  B
)  e.  ( 1..^ 5 )  \/  ( # `
 B )  =  5 ) )
36 df-5 10379 . . . . . . . . 9  |-  5  =  ( 4  +  1 )
3736oveq2i 6101 . . . . . . . 8  |-  ( 1..^ 5 )  =  ( 1..^ ( 4  +  1 ) )
3837eleq2i 2505 . . . . . . 7  |-  ( (
# `  B )  e.  ( 1..^ 5 )  <-> 
( # `  B )  e.  ( 1..^ ( 4  +  1 ) ) )
39 4nn 10477 . . . . . . . . 9  |-  4  e.  NN
4039, 20eleqtri 2513 . . . . . . . 8  |-  4  e.  ( ZZ>= `  1 )
41 fzosplitsni 11630 . . . . . . . 8  |-  ( 4  e.  ( ZZ>= `  1
)  ->  ( ( # `
 B )  e.  ( 1..^ ( 4  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 4 )  \/  ( # `
 B )  =  4 ) ) )
4240, 41ax-mp 5 . . . . . . 7  |-  ( (
# `  B )  e.  ( 1..^ ( 4  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 4 )  \/  ( # `
 B )  =  4 ) )
4338, 42bitri 249 . . . . . 6  |-  ( (
# `  B )  e.  ( 1..^ 5 )  <-> 
( ( # `  B
)  e.  ( 1..^ 4 )  \/  ( # `
 B )  =  4 ) )
44 df-4 10378 . . . . . . . . . . 11  |-  4  =  ( 3  +  1 )
4544oveq2i 6101 . . . . . . . . . 10  |-  ( 1..^ 4 )  =  ( 1..^ ( 3  +  1 ) )
4645eleq2i 2505 . . . . . . . . 9  |-  ( (
# `  B )  e.  ( 1..^ 4 )  <-> 
( # `  B )  e.  ( 1..^ ( 3  +  1 ) ) )
47 3nn 10476 . . . . . . . . . . 11  |-  3  e.  NN
4847, 20eleqtri 2513 . . . . . . . . . 10  |-  3  e.  ( ZZ>= `  1 )
49 fzosplitsni 11630 . . . . . . . . . 10  |-  ( 3  e.  ( ZZ>= `  1
)  ->  ( ( # `
 B )  e.  ( 1..^ ( 3  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 3 )  \/  ( # `
 B )  =  3 ) ) )
5048, 49ax-mp 5 . . . . . . . . 9  |-  ( (
# `  B )  e.  ( 1..^ ( 3  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 3 )  \/  ( # `
 B )  =  3 ) )
5146, 50bitri 249 . . . . . . . 8  |-  ( (
# `  B )  e.  ( 1..^ 4 )  <-> 
( ( # `  B
)  e.  ( 1..^ 3 )  \/  ( # `
 B )  =  3 ) )
52 df-3 10377 . . . . . . . . . . . . 13  |-  3  =  ( 2  +  1 )
5352oveq2i 6101 . . . . . . . . . . . 12  |-  ( 1..^ 3 )  =  ( 1..^ ( 2  +  1 ) )
5453eleq2i 2505 . . . . . . . . . . 11  |-  ( (
# `  B )  e.  ( 1..^ 3 )  <-> 
( # `  B )  e.  ( 1..^ ( 2  +  1 ) ) )
55 2nn 10475 . . . . . . . . . . . . 13  |-  2  e.  NN
5655, 20eleqtri 2513 . . . . . . . . . . . 12  |-  2  e.  ( ZZ>= `  1 )
57 fzosplitsni 11630 . . . . . . . . . . . 12  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( ( # `
 B )  e.  ( 1..^ ( 2  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 2 )  \/  ( # `
 B )  =  2 ) ) )
5856, 57ax-mp 5 . . . . . . . . . . 11  |-  ( (
# `  B )  e.  ( 1..^ ( 2  +  1 ) )  <-> 
( ( # `  B
)  e.  ( 1..^ 2 )  \/  ( # `
 B )  =  2 ) )
5954, 58bitri 249 . . . . . . . . . 10  |-  ( (
# `  B )  e.  ( 1..^ 3 )  <-> 
( ( # `  B
)  e.  ( 1..^ 2 )  \/  ( # `
 B )  =  2 ) )
60 elsni 3899 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  B )  e.  { 1 }  ->  (
# `  B )  =  1 )
61 df-2 10376 . . . . . . . . . . . . . . . . . . 19  |-  2  =  ( 1  +  1 )
6261oveq2i 6101 . . . . . . . . . . . . . . . . . 18  |-  ( 1..^ 2 )  =  ( 1..^ ( 1  +  1 ) )
63 1z 10672 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  ZZ
64 fzosn 11602 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  e.  ZZ  ->  (
1..^ ( 1  +  1 ) )  =  { 1 } )
6563, 64ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( 1..^ ( 1  +  1 ) )  =  {
1 }
6662, 65eqtri 2461 . . . . . . . . . . . . . . . . 17  |-  ( 1..^ 2 )  =  {
1 }
6760, 66eleq2s 2533 . . . . . . . . . . . . . . . 16  |-  ( (
# `  B )  e.  ( 1..^ 2 )  ->  ( # `  B
)  =  1 )
6867adantl 463 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  ( # `
 B )  =  1 )
69 hash1 12158 . . . . . . . . . . . . . . 15  |-  ( # `  1o )  =  1
7068, 69syl6eqr 2491 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  ( # `
 B )  =  ( # `  1o ) )
71 1nn0 10591 . . . . . . . . . . . . . . . . 17  |-  1  e.  NN0
7268, 71syl6eqel 2529 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  ( # `
 B )  e. 
NN0 )
73 hashclb 12124 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  _V  ->  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
)
749, 73ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
7572, 74sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  B  e.  Fin )
76 1onn 7074 . . . . . . . . . . . . . . . 16  |-  1o  e.  om
77 nnfi 7499 . . . . . . . . . . . . . . . 16  |-  ( 1o  e.  om  ->  1o  e.  Fin )
7876, 77ax-mp 5 . . . . . . . . . . . . . . 15  |-  1o  e.  Fin
79 hashen 12114 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  Fin  /\  1o  e.  Fin )  -> 
( ( # `  B
)  =  ( # `  1o )  <->  B  ~~  1o ) )
8075, 78, 79sylancl 657 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  (
( # `  B )  =  ( # `  1o ) 
<->  B  ~~  1o ) )
8170, 80mpbid 210 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  B  ~~  1o )
8210cyg 16362 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  B  ~~  1o )  ->  G  e. CycGrp )
83 cygabl 16360 . . . . . . . . . . . . . 14  |-  ( G  e. CycGrp  ->  G  e.  Abel )
8482, 83syl 16 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  B  ~~  1o )  ->  G  e.  Abel )
8581, 84syldan 467 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 2 ) )  ->  G  e.  Abel )
8685ex 434 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 2 )  ->  G  e.  Abel ) )
87 id 22 . . . . . . . . . . . . 13  |-  ( (
# `  B )  =  2  ->  ( # `
 B )  =  2 )
88 2prm 13775 . . . . . . . . . . . . 13  |-  2  e.  Prime
8987, 88syl6eqel 2529 . . . . . . . . . . . 12  |-  ( (
# `  B )  =  2  ->  ( # `
 B )  e. 
Prime )
901prmcyg 16363 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  Prime )  ->  G  e. CycGrp )
9190, 83syl 16 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  Prime )  ->  G  e.  Abel )
9291ex 434 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  Prime  ->  G  e. 
Abel ) )
9389, 92syl5 32 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (
( # `  B )  =  2  ->  G  e.  Abel ) )
9486, 93jaod 380 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  (
( ( # `  B
)  e.  ( 1..^ 2 )  \/  ( # `
 B )  =  2 )  ->  G  e.  Abel ) )
9559, 94syl5bi 217 . . . . . . . . 9  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 3 )  ->  G  e.  Abel ) )
96 id 22 . . . . . . . . . . 11  |-  ( (
# `  B )  =  3  ->  ( # `
 B )  =  3 )
97 3prm 13776 . . . . . . . . . . 11  |-  3  e.  Prime
9896, 97syl6eqel 2529 . . . . . . . . . 10  |-  ( (
# `  B )  =  3  ->  ( # `
 B )  e. 
Prime )
9998, 92syl5 32 . . . . . . . . 9  |-  ( G  e.  Grp  ->  (
( # `  B )  =  3  ->  G  e.  Abel ) )
10095, 99jaod 380 . . . . . . . 8  |-  ( G  e.  Grp  ->  (
( ( # `  B
)  e.  ( 1..^ 3 )  \/  ( # `
 B )  =  3 )  ->  G  e.  Abel ) )
10151, 100syl5bi 217 . . . . . . 7  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 4 )  ->  G  e.  Abel ) )
102 simpl 454 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  ->  G  e.  Grp )
103 2z 10674 . . . . . . . . . . 11  |-  2  e.  ZZ
104 eqid 2441 . . . . . . . . . . . 12  |-  (gEx `  G )  =  (gEx
`  G )
105 eqid 2441 . . . . . . . . . . . 12  |-  ( od
`  G )  =  ( od `  G
)
1061, 104, 105gexdvds2 16077 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  2  e.  ZZ )  ->  ( (gEx `  G
)  ||  2  <->  A. x  e.  B  ( ( od `  G ) `  x )  ||  2
) )
107102, 103, 106sylancl 657 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( (gEx `  G
)  ||  2  <->  A. x  e.  B  ( ( od `  G ) `  x )  ||  2
) )
1081, 104gex2abl 16326 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  (gEx `  G )  ||  2 )  ->  G  e.  Abel )
109108ex 434 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (
(gEx `  G )  ||  2  ->  G  e. 
Abel ) )
110109adantr 462 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( (gEx `  G
)  ||  2  ->  G  e.  Abel ) )
111107, 110sylbird 235 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( A. x  e.  B  ( ( od
`  G ) `  x )  ||  2  ->  G  e.  Abel )
)
112 rexnal 2724 . . . . . . . . . 10  |-  ( E. x  e.  B  -.  ( ( od `  G ) `  x
)  ||  2  <->  -.  A. x  e.  B  ( ( od `  G ) `  x )  ||  2
)
113102adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  G  e.  Grp )
114 simprl 750 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  x  e.  B )
1151, 105odcl 16032 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  ->  (
( od `  G
) `  x )  e.  NN0 )
116115ad2antrl 722 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  e.  NN0 )
117 4nn0 10594 . . . . . . . . . . . . . . . 16  |-  4  e.  NN0
118117a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
4  e.  NN0 )
119 simpr 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( # `  B )  =  4 )
120119, 117syl6eqel 2529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( # `  B )  e.  NN0 )
121120, 74sylibr 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  ->  B  e.  Fin )
122121adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  B  e.  Fin )
1231, 105oddvds2 16060 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  B  e.  Fin  /\  x  e.  B )  ->  (
( od `  G
) `  x )  ||  ( # `  B
) )
124113, 122, 114, 123syl3anc 1213 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  ||  ( # `  B
) )
125119adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( # `  B )  =  4 )
126124, 125breqtrd 4313 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  ||  4 )
127 sq2 11958 . . . . . . . . . . . . . . . . 17  |-  ( 2 ^ 2 )  =  4
128103a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
2  e.  ZZ )
129 2nn0 10592 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN0
130129a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
2  e.  NN0 )
1311, 105odcl2 16059 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( G  e.  Grp  /\  B  e.  Fin  /\  x  e.  B )  ->  (
( od `  G
) `  x )  e.  NN )
132113, 122, 114, 131syl3anc 1213 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  e.  NN )
133 pccl 13912 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  Prime  /\  (
( od `  G
) `  x )  e.  NN )  ->  (
2  pCnt  ( ( od `  G ) `  x ) )  e. 
NN0 )
13488, 132, 133sylancr 658 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2  pCnt  (
( od `  G
) `  x )
)  e.  NN0 )
135134nn0zd 10741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2  pCnt  (
( od `  G
) `  x )
)  e.  ZZ )
136 simprr 751 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  -.  ( ( od `  G ) `  x
)  ||  2 )
137 dvdsexp 13585 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 2  e.  ZZ  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  NN0  /\  1  e.  ( ZZ>= `  ( 2  pCnt  (
( od `  G
) `  x )
) ) )  -> 
( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) ) 
||  ( 2 ^ 1 ) )
1381373expia 1184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 2  e.  ZZ  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  NN0 )  ->  ( 1  e.  (
ZZ>= `  ( 2  pCnt 
( ( od `  G ) `  x
) ) )  -> 
( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) ) 
||  ( 2 ^ 1 ) ) )
139103, 134, 138sylancr 658 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  e.  (
ZZ>= `  ( 2  pCnt 
( ( od `  G ) `  x
) ) )  -> 
( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) ) 
||  ( 2 ^ 1 ) ) )
140 eluz 10870 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( 2  pCnt  (
( od `  G
) `  x )
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( 1  e.  (
ZZ>= `  ( 2  pCnt 
( ( od `  G ) `  x
) ) )  <->  ( 2 
pCnt  ( ( od
`  G ) `  x ) )  <_ 
1 ) )
141135, 63, 140sylancl 657 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  e.  (
ZZ>= `  ( 2  pCnt 
( ( od `  G ) `  x
) ) )  <->  ( 2 
pCnt  ( ( od
`  G ) `  x ) )  <_ 
1 ) )
142 oveq2 6098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  2  ->  (
2 ^ n )  =  ( 2 ^ 2 ) )
143142, 127syl6eq 2489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  2  ->  (
2 ^ n )  =  4 )
144143breq2d 4301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  2  ->  (
( ( od `  G ) `  x
)  ||  ( 2 ^ n )  <->  ( ( od `  G ) `  x )  ||  4
) )
145144rspcev 3070 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 2  e.  NN0  /\  ( ( od `  G ) `  x
)  ||  4 )  ->  E. n  e.  NN0  ( ( od `  G ) `  x
)  ||  ( 2 ^ n ) )
146129, 126, 145sylancr 658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  E. n  e.  NN0  ( ( od `  G ) `  x
)  ||  ( 2 ^ n ) )
147 pcprmpw2 13944 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 2  e.  Prime  /\  (
( od `  G
) `  x )  e.  NN )  ->  ( E. n  e.  NN0  ( ( od `  G ) `  x
)  ||  ( 2 ^ n )  <->  ( ( od `  G ) `  x )  =  ( 2 ^ ( 2 
pCnt  ( ( od
`  G ) `  x ) ) ) ) )
14888, 132, 147sylancr 658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( E. n  e. 
NN0  ( ( od
`  G ) `  x )  ||  (
2 ^ n )  <-> 
( ( od `  G ) `  x
)  =  ( 2 ^ ( 2  pCnt 
( ( od `  G ) `  x
) ) ) ) )
149146, 148mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  =  ( 2 ^ ( 2  pCnt 
( ( od `  G ) `  x
) ) ) )
150149eqcomd 2446 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) )  =  ( ( od
`  G ) `  x ) )
151 2cn 10388 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  2  e.  CC
152 exp1 11867 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 2  e.  CC  ->  (
2 ^ 1 )  =  2 )
153151, 152ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 2 ^ 1 )  =  2
154153a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2 ^ 1 )  =  2 )
155150, 154breq12d 4302 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( 2 ^ ( 2  pCnt  (
( od `  G
) `  x )
) )  ||  (
2 ^ 1 )  <-> 
( ( od `  G ) `  x
)  ||  2 ) )
156139, 141, 1553imtr3d 267 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( 2  pCnt 
( ( od `  G ) `  x
) )  <_  1  ->  ( ( od `  G ) `  x
)  ||  2 ) )
157136, 156mtod 177 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  -.  ( 2  pCnt  (
( od `  G
) `  x )
)  <_  1 )
158 1re 9381 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  RR
159134nn0red 10633 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2  pCnt  (
( od `  G
) `  x )
)  e.  RR )
160 ltnle 9450 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  e.  RR  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  RR )  ->  ( 1  < 
( 2  pCnt  (
( od `  G
) `  x )
)  <->  -.  ( 2 
pCnt  ( ( od
`  G ) `  x ) )  <_ 
1 ) )
161158, 159, 160sylancr 658 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  <  (
2  pCnt  ( ( od `  G ) `  x ) )  <->  -.  (
2  pCnt  ( ( od `  G ) `  x ) )  <_ 
1 ) )
162157, 161mpbird 232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
1  <  ( 2 
pCnt  ( ( od
`  G ) `  x ) ) )
163 nn0ltp1le 10698 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  NN0  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  NN0 )  ->  ( 1  <  (
2  pCnt  ( ( od `  G ) `  x ) )  <->  ( 1  +  1 )  <_ 
( 2  pCnt  (
( od `  G
) `  x )
) ) )
16471, 134, 163sylancr 658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  <  (
2  pCnt  ( ( od `  G ) `  x ) )  <->  ( 1  +  1 )  <_ 
( 2  pCnt  (
( od `  G
) `  x )
) ) )
165162, 164mpbid 210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 1  +  1 )  <_  ( 2 
pCnt  ( ( od
`  G ) `  x ) ) )
16661, 165syl5eqbr 4322 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
2  <_  ( 2 
pCnt  ( ( od
`  G ) `  x ) ) )
167 eluz2 10863 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  pCnt  ( ( od `  G ) `  x ) )  e.  ( ZZ>= `  2 )  <->  ( 2  e.  ZZ  /\  ( 2  pCnt  (
( od `  G
) `  x )
)  e.  ZZ  /\  2  <_  ( 2  pCnt 
( ( od `  G ) `  x
) ) ) )
168128, 135, 166, 167syl3anbrc 1167 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2  pCnt  (
( od `  G
) `  x )
)  e.  ( ZZ>= ` 
2 ) )
169 dvdsexp 13585 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  2  e.  NN0  /\  (
2  pCnt  ( ( od `  G ) `  x ) )  e.  ( ZZ>= `  2 )
)  ->  ( 2 ^ 2 )  ||  ( 2 ^ (
2  pCnt  ( ( od `  G ) `  x ) ) ) )
170128, 130, 168, 169syl3anc 1213 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( 2 ^ 2 )  ||  ( 2 ^ ( 2  pCnt 
( ( od `  G ) `  x
) ) ) )
171127, 170syl5eqbrr 4323 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
4  ||  ( 2 ^ ( 2  pCnt 
( ( od `  G ) `  x
) ) ) )
172171, 149breqtrrd 4315 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
4  ||  ( ( od `  G ) `  x ) )
173 dvdseq 13576 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( od
`  G ) `  x )  e.  NN0  /\  4  e.  NN0 )  /\  ( ( ( od
`  G ) `  x )  ||  4  /\  4  ||  ( ( od `  G ) `
 x ) ) )  ->  ( ( od `  G ) `  x )  =  4 )
174116, 118, 126, 172, 173syl22anc 1214 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  =  4 )
175174, 125eqtr4d 2476 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  -> 
( ( od `  G ) `  x
)  =  ( # `  B ) )
1761, 105, 113, 114, 175iscygodd 16358 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  G  e. CycGrp )
177176, 83syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( # `  B
)  =  4 )  /\  ( x  e.  B  /\  -.  (
( od `  G
) `  x )  ||  2 ) )  ->  G  e.  Abel )
178177rexlimdvaa 2840 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( E. x  e.  B  -.  ( ( od `  G ) `
 x )  ||  2  ->  G  e.  Abel ) )
179112, 178syl5bir 218 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  -> 
( -.  A. x  e.  B  ( ( od `  G ) `  x )  ||  2  ->  G  e.  Abel )
)
180111, 179pm2.61d 158 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( # `  B )  =  4 )  ->  G  e.  Abel )
181180ex 434 . . . . . . 7  |-  ( G  e.  Grp  ->  (
( # `  B )  =  4  ->  G  e.  Abel ) )
182101, 181jaod 380 . . . . . 6  |-  ( G  e.  Grp  ->  (
( ( # `  B
)  e.  ( 1..^ 4 )  \/  ( # `
 B )  =  4 )  ->  G  e.  Abel ) )
18343, 182syl5bi 217 . . . . 5  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 5 )  ->  G  e.  Abel ) )
184 id 22 . . . . . . 7  |-  ( (
# `  B )  =  5  ->  ( # `
 B )  =  5 )
185 5prm 14132 . . . . . . 7  |-  5  e.  Prime
186184, 185syl6eqel 2529 . . . . . 6  |-  ( (
# `  B )  =  5  ->  ( # `
 B )  e. 
Prime )
187186, 92syl5 32 . . . . 5  |-  ( G  e.  Grp  ->  (
( # `  B )  =  5  ->  G  e.  Abel ) )
188183, 187jaod 380 . . . 4  |-  ( G  e.  Grp  ->  (
( ( # `  B
)  e.  ( 1..^ 5 )  \/  ( # `
 B )  =  5 )  ->  G  e.  Abel ) )
18935, 188syl5bi 217 . . 3  |-  ( G  e.  Grp  ->  (
( # `  B )  e.  ( 1..^ 6 )  ->  G  e.  Abel ) )
190189imp 429 . 2  |-  ( ( G  e.  Grp  /\  ( # `  B )  e.  ( 1..^ 6 ) )  ->  G  e.  Abel )
19127, 190syldan 467 1  |-  ( ( G  e.  Grp  /\  ( # `  B )  <  6 )  ->  G  e.  Abel )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   _Vcvv 2970   (/)c0 3634   {csn 3874   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   omcom 6475   1oc1o 6909    ~~ cen 7303   Fincfn 7306   CCcc 9276   RRcr 9277   1c1 9279    + caddc 9281   +oocpnf 9411   RR*cxr 9413    < clt 9414    <_ cle 9415   NNcn 10318   2c2 10367   3c3 10368   4c4 10369   5c5 10370   6c6 10371   NN0cn0 10575   ZZcz 10642   ZZ>=cuz 10857  ..^cfzo 11544   ^cexp 11861   #chash 12099    || cdivides 13531   Primecprime 13759    pCnt cpc 13899   Basecbs 14170   Grpcgrp 15406   odcod 16021  gExcgex 16022   Abelcabel 16271  CycGrpccyg 16347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-dvds 13532  df-gcd 13687  df-prm 13760  df-pc 13900  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-mnd 15411  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-eqg 15673  df-od 16025  df-gex 16026  df-cmn 16272  df-abl 16273  df-cyg 16348
This theorem is referenced by:  pgrple2abel  30685
  Copyright terms: Public domain W3C validator