MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt2subd Structured version   Unicode version

Theorem lt2subd 9983
Description: Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
lt2addd.4  |-  ( ph  ->  D  e.  RR )
lt2addd.5  |-  ( ph  ->  A  <  C )
lt2addd.6  |-  ( ph  ->  B  <  D )
Assertion
Ref Expression
lt2subd  |-  ( ph  ->  ( A  -  D
)  <  ( C  -  B ) )

Proof of Theorem lt2subd
StepHypRef Expression
1 lt2addd.5 . 2  |-  ( ph  ->  A  <  C )
2 lt2addd.6 . 2  |-  ( ph  ->  B  <  D )
3 leidd.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 lt2addd.4 . . 3  |-  ( ph  ->  D  e.  RR )
5 ltadd1d.3 . . 3  |-  ( ph  ->  C  e.  RR )
6 ltnegd.2 . . 3  |-  ( ph  ->  B  e.  RR )
7 lt2sub 9858 . . 3  |-  ( ( ( A  e.  RR  /\  D  e.  RR )  /\  ( C  e.  RR  /\  B  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <  D )  ->  ( A  -  D )  <  ( C  -  B )
) )
83, 4, 5, 6, 7syl22anc 1219 . 2  |-  ( ph  ->  ( ( A  < 
C  /\  B  <  D )  ->  ( A  -  D )  <  ( C  -  B )
) )
91, 2, 8mp2and 679 1  |-  ( ph  ->  ( A  -  D
)  <  ( C  -  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1756   class class class wbr 4313  (class class class)co 6112   RRcr 9302    < clt 9439    - cmin 9616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-po 4662  df-so 4663  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619
This theorem is referenced by:  ovolicc2lem4  21025
  Copyright terms: Public domain W3C validator