MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lswccats1 Structured version   Unicode version

Theorem lswccats1 12317
Description: The last symbol of a word concatenated with a singleton word is the symbol of the singleton. (Contributed by AV, 6-Aug-2018.) (Proof shortened by AV, 22-Oct-2018.)
Assertion
Ref Expression
lswccats1  |-  ( ( W  e. Word  V  /\  S  e.  V )  ->  ( lastS  `  ( W concat  <" S "> ) )  =  S )

Proof of Theorem lswccats1
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( W  e. Word  V  /\  S  e.  V )  ->  W  e. Word  V )
2 s1cl 12298 . . . 4  |-  ( S  e.  V  ->  <" S ">  e. Word  V )
32adantl 466 . . 3  |-  ( ( W  e. Word  V  /\  S  e.  V )  ->  <" S ">  e. Word  V )
4 s1nz 12302 . . . 4  |-  <" S ">  =/=  (/)
54a1i 11 . . 3  |-  ( ( W  e. Word  V  /\  S  e.  V )  ->  <" S ">  =/=  (/) )
6 lswccatn0lsw 12292 . . 3  |-  ( ( W  e. Word  V  /\  <" S ">  e. Word  V  /\  <" S ">  =/=  (/) )  -> 
( lastS  `  ( W concat  <" S "> ) )  =  ( lastS  `  <" S "> ) )
71, 3, 5, 6syl3anc 1218 . 2  |-  ( ( W  e. Word  V  /\  S  e.  V )  ->  ( lastS  `  ( W concat  <" S "> ) )  =  ( lastS  `  <" S "> ) )
8 lsws1 12304 . . 3  |-  ( S  e.  V  ->  ( lastS  ` 
<" S "> )  =  S )
98adantl 466 . 2  |-  ( ( W  e. Word  V  /\  S  e.  V )  ->  ( lastS  `  <" S "> )  =  S )
107, 9eqtrd 2475 1  |-  ( ( W  e. Word  V  /\  S  e.  V )  ->  ( lastS  `  ( W concat  <" S "> ) )  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611   (/)c0 3642   ` cfv 5423  (class class class)co 6096  Word cword 12226   lastS clsw 12227   concat cconcat 12228   <"cs1 12229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-card 8114  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-n0 10585  df-z 10652  df-uz 10867  df-fz 11443  df-fzo 11554  df-hash 12109  df-word 12234  df-lsw 12235  df-concat 12236  df-s1 12237
This theorem is referenced by:  sseqp1  26783  wwlkextsur  30368  clwwlkel  30460  clwwlkext2edg  30469  wwlkext2clwwlk  30470  numclwwlkovf2ex  30684  numclwlk1lem2fo  30693
  Copyright terms: Public domain W3C validator