MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvancl1 Structured version   Unicode version

Theorem lssvancl1 17391
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 17582. Can it be used along with lspsnne1 17563, lspsnne2 17564 to shorten this proof? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lssvancl.v  |-  V  =  ( Base `  W
)
lssvancl.p  |-  .+  =  ( +g  `  W )
lssvancl.s  |-  S  =  ( LSubSp `  W )
lssvancl.w  |-  ( ph  ->  W  e.  LMod )
lssvancl.u  |-  ( ph  ->  U  e.  S )
lssvancl.x  |-  ( ph  ->  X  e.  U )
lssvancl.y  |-  ( ph  ->  Y  e.  V )
lssvancl.n  |-  ( ph  ->  -.  Y  e.  U
)
Assertion
Ref Expression
lssvancl1  |-  ( ph  ->  -.  ( X  .+  Y )  e.  U
)

Proof of Theorem lssvancl1
StepHypRef Expression
1 lssvancl.n . 2  |-  ( ph  ->  -.  Y  e.  U
)
2 lssvancl.w . . . . . 6  |-  ( ph  ->  W  e.  LMod )
3 lmodabl 17357 . . . . . 6  |-  ( W  e.  LMod  ->  W  e. 
Abel )
42, 3syl 16 . . . . 5  |-  ( ph  ->  W  e.  Abel )
5 lssvancl.u . . . . . 6  |-  ( ph  ->  U  e.  S )
6 lssvancl.x . . . . . 6  |-  ( ph  ->  X  e.  U )
7 lssvancl.v . . . . . . 7  |-  V  =  ( Base `  W
)
8 lssvancl.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
97, 8lssel 17384 . . . . . 6  |-  ( ( U  e.  S  /\  X  e.  U )  ->  X  e.  V )
105, 6, 9syl2anc 661 . . . . 5  |-  ( ph  ->  X  e.  V )
11 lssvancl.y . . . . 5  |-  ( ph  ->  Y  e.  V )
12 lssvancl.p . . . . . 6  |-  .+  =  ( +g  `  W )
13 eqid 2467 . . . . . 6  |-  ( -g `  W )  =  (
-g `  W )
147, 12, 13ablpncan2 16632 . . . . 5  |-  ( ( W  e.  Abel  /\  X  e.  V  /\  Y  e.  V )  ->  (
( X  .+  Y
) ( -g `  W
) X )  =  Y )
154, 10, 11, 14syl3anc 1228 . . . 4  |-  ( ph  ->  ( ( X  .+  Y ) ( -g `  W ) X )  =  Y )
1615adantr 465 . . 3  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( ( X  .+  Y ) (
-g `  W ) X )  =  Y )
172adantr 465 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  W  e.  LMod )
185adantr 465 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  U  e.  S )
19 simpr 461 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( X  .+  Y )  e.  U
)
206adantr 465 . . . 4  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  X  e.  U )
2113, 8lssvsubcl 17390 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( ( X 
.+  Y )  e.  U  /\  X  e.  U ) )  -> 
( ( X  .+  Y ) ( -g `  W ) X )  e.  U )
2217, 18, 19, 20, 21syl22anc 1229 . . 3  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  ( ( X  .+  Y ) (
-g `  W ) X )  e.  U
)
2316, 22eqeltrrd 2556 . 2  |-  ( (
ph  /\  ( X  .+  Y )  e.  U
)  ->  Y  e.  U )
241, 23mtand 659 1  |-  ( ph  ->  -.  ( X  .+  Y )  e.  U
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   ` cfv 5588  (class class class)co 6284   Basecbs 14490   +g cplusg 14555   -gcsg 15730   Abelcabl 16605   LModclmod 17312   LSubSpclss 17378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-plusg 14568  df-0g 14697  df-mnd 15732  df-grp 15867  df-minusg 15868  df-sbg 15869  df-cmn 16606  df-abl 16607  df-mgp 16944  df-ur 16956  df-rng 17002  df-lmod 17314  df-lss 17379
This theorem is referenced by:  lssvancl2  17392  dvh3dim2  36263  dvh3dim3N  36264  hdmap11lem2  36660
  Copyright terms: Public domain W3C validator